

Large-Scale Knowledge Processing
Optimization Techniques (1)
Practice Brief Solutions

p.7 Practice

Let x_1 , x_2 , and x_3 denote the production amounts of each product.

$$\begin{aligned} \text{maximize} \quad & 3x_1 + 5x_2 + 4x_3 \\ \text{subject to} \quad & 4x_1 + 2x_2 + x_3 \leq 6 \\ & x_1 + 2x_2 + 4x_3 \leq 7 \\ & 5x_1 + 2x_2 + 3x_3 \leq 9 \\ & 3x_1 + 3x_2 + 2x_3 \leq 8 \\ & x_1 \geq 0, x_2 \geq 0, x_3 \geq 0 \end{aligned}$$

p.8 Practice

Let x_1, x_2, \dots, x_n denote the production amounts of each product.

$$\begin{aligned} \text{maximize} \quad & \sum_{i=1}^n a_i x_i \\ \text{subject to} \quad & \sum_{i=1}^n c_{ij} x_i \leq b_j \quad (j = 1, 2, \dots, m) \\ & x_i \geq 0 \quad (i = 1, 2, \dots, n) \end{aligned}$$

p.16 Practice

The optimal solution is $(x_1, x_2) = (\frac{4}{3}, \frac{2}{3})$, and the optimal value is $\frac{26}{3}$.

p.18 Practice

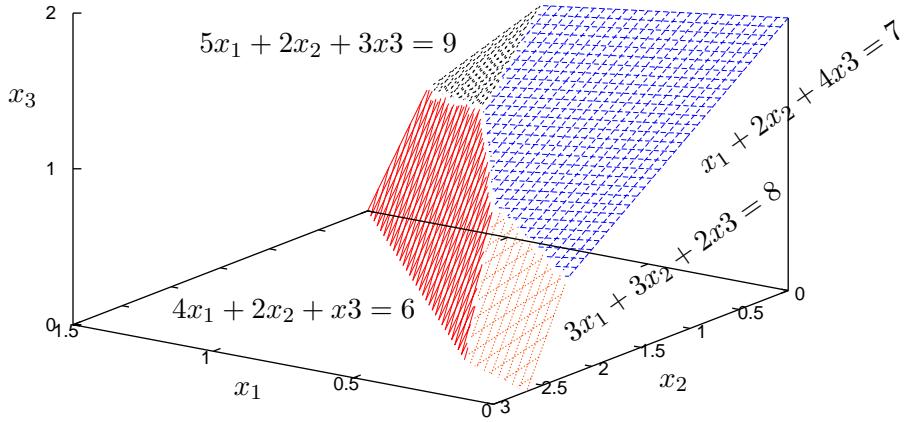
The optimal solution is $(x_1, x_2) = (2, 0)$, and the optimal value is 8.

p.20 Practice

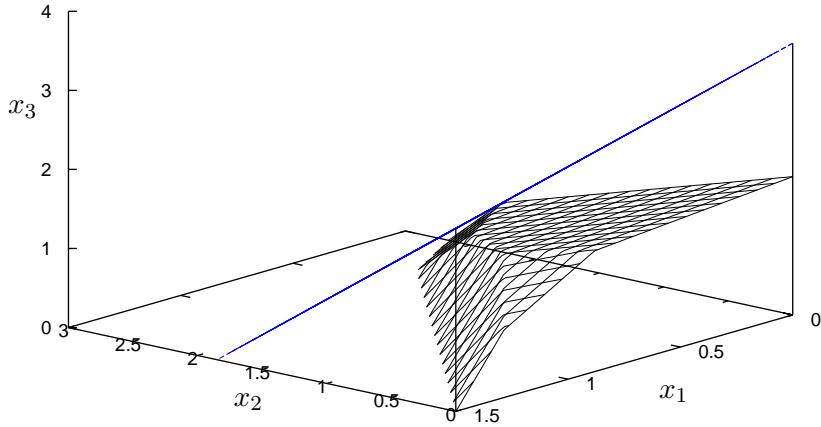
- (a) Figure omitted. The optimal solution is $(x_1, x_2) = (\frac{4}{3}, \frac{2}{3})$, and the optimal value is $\frac{26}{3}$.
- (b) Figure omitted. The optimal solution is $(x_1, x_2) = (0, 0)$, and the optimal value is 0.
- (c) Figure omitted. The optimal solution is $(x_1, x_2) = (6, 2)$, and the optimal value is 28.
- (d) Figure omitted. The optimal solution is $(x_1, x_2) = (0, 1)$, and the optimal value is 2.

p.21 Advanced

The figure is as follows.



From a different view point, we can see that plane $z = 3x_1 + 5x_2 + 4x_3$ is touching a vertex of the polyhedron.



The optimal solution is $(x_1, x_2, x_3) = (0, \frac{9}{4}, \frac{5}{8})$, and the optimal value is $\frac{55}{4}$.

For two variables, optimization can be done visually using a figure. With three variables, however, it becomes difficult. With even more variables, it becomes practically impossible.

p.29 Practice

(a) minimize $z = -4x_1 - 2x'_2 + 2x''_2$
 subject to $2x_1 + 2x'_2 - 2x''_2 + s_1 = 4$
 $3x_1 + 6x'_2 - 6x''_2 - s_2 = 9$
 $x_1, x'_2, x''_2, s_1, s_2 \geq 0$

To make $b_i \geq 0$, constraint $-3x_1 - 6x_2 \leq -9$ is transformed into $3x_1 + 6x_2 \geq 9$.

(b) minimize $z = -3x_1 - 5x_2 - 4x'_3 + 4x''_3$
 subject to $4x_1 + 2x_2 + 3x'_3 - 3x''_3 + s_1 = 6$
 $-3x_1 + 4x_2 - 5x'_3 + 5x''_3 - s_2 = 2$
 $x_1, x_2, x'_3, x''_3, s_1, s_2 \geq 0$

To make $b_i \geq 0$, constraint $3x_1 - 4x_2 + 5x_3 \leq -2$ is transformed into $-3x_1 + 4x_2 - 5x_3 \geq 2$.