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(a) From the standard form, we construct the following artificial problem.

minimize w = x4

subject to − x1 − x2 − x3 + x4 = 1

x1, x2, x3, x4 ≥ 0

We solve this problem by the simplex method.

x1 x2 x3

w 1 1 1 1

x4 1 1 1 1

Since the optimal value of the artificial problem satisfies w∗ > 0, we conclude that the original

problem is infeasible.

(b) The standard form is given as follows.

minimize z = − x1 − 2x2

subject to − x1 − x2 + x3 = 1

x1, x2, x3 ≥ 0

From the standard form, we construct the following artificial problem.

minimize w = x4

subject to − x1 − x2 + x3 + x4 = 1

x1, x2, x3, x4 ≥ 0

We solve this problem by the simplex method.

x1 x2 x3

w 1 1 1 −1

x4 1 1 1 −1

Pivot at (1, 3)

x1 x2 x4

w 0 0 0 1

x3 1 1 1 −1

The artificial problem has optimal value w∗ = 0, and the set of basic variables does not contain

the artificial variable x4. Hence, (x1, x2, x3) = (0, 0, 1) is a feasible basic solution of the problem in

standard form.

We now solve the problem in standard form by the simplex method.

x1 x2

z 0 −1 −2

x3 1 1 1

As x2 increases, x3 also increases, and thus the problem is unbounded (that is, the objective value

can be decreased without bound).

(c) The standard form is given as follows.



minimize z = − x1 − 2x2

subject to x1 + x2 − x3 = 1

x1, x2, x3 ≥ 0

From the standard form, we construct the following artificial problem.

minimize w = x4

subject to x1 + x2 − x3 + x4 = 1

x1, x2, x3, x4 ≥ 0

We solve this problem by the simplex method.

x1 x2 x3

w 1 −1 −1 1

x4 1 −1 −1 1

Pivot at (1, 1)

x4 x2 x3

w 0 1 0 0

x1 1 −1 −1 1

The artificial problem has optimal value w∗ = 0, and the set of basic variables does not contain

the artificial variable x4. Hence, (x1, x2, x3) = (1, 0, 0) is a feasible basic solution of the problem in

standard form.

We now solve the problem in standard form by the simplex method.

x2 x3

z −1 −1 −1

x1 1 −1 1

Pivot at (1, 1)

x1 x3

z −2 1 −2

x2 1 −1 1

As x3 increases, x2 also increases, and thus the problem is unbounded (that is, the objective value

can be decreased without bound).
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(a) From the standard form, we construct the following artificial problem.

minimize w = x3 + x4

subject to − x1 − x2 + x3 = 2

− 2x1 − x2 + x4 = 8

x1, x2, x3, x4 ≥ 0

We solve this problem by the simplex method.

x1 x2

w 10 3 2

x3 2 1 1

x4 8 2 1

Since the optimal value of the artificial problem satisfies w∗ > 0, the original problem is infeasible.
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(b) The standard form is given as follows.

minimize z = 3x1 + x2

subject to x1 + x2 + x3 = 4

x1 + 2x2 = 5

x1, x2, x3 ≥ 0

From the standard form, we construct the following artificial problem.

minimize w = x4 + x5

subject to x1 + x2 + x3 + x4 = 4

x1 + 2x2 + x5 = 5

x1, x2, x3, x4, x5 ≥ 0

We solve this problem by the simplex method.

x1 x2 x3

w 9 −2 −3 −1

x4 4 −1 −1 −1

x5 5 −1 −2 0

Pivot at (2, 2)

x1 x5 x3

w 3
2 −1

2
3
2 −1

x4
3
2 −1

2
1
2 −1

x2
5
2 −1

2 −1
2 0

Pivot at (1, 3)

x1 x5 x4

w 0 0 1 1

x3
3
2 −1

2
1
2 −1

x2
5
2 −1

2 −1
2 0

The artificial problem has optimal value w∗ = 0, and the set of basic variables does not contain the

artificial variables x4 and x5. Hence, (x1, x2, x3) = (0, 52 ,
3
2) is a feasible basic solution of the problem

in standard form.

We now solve the problem in standard form by the simplex method.

x1

z 5
2

5
2

x3
3
2 −1

2

x2
5
2 −1

2

Therefore, the problem in standard form attains the optimal value 5
2 at (x1, x2) = (0, 52).

The optimal value of the original problem is −5
2 .
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(a) The standard form is given as follows.

minimize z = − x1 − 4x2

subject to 2x1 + x2 + x3 = 8

x1 + 2x2 + x4 = 10

x1, x2, x3, x4 ≥ 0



From the standard form, we construct the following artificial problem.

minimize w = x5 + x6

subject to 2x1 + x2 + x3 + x5 = 8

x1 + 2x2 + x4 + x6 = 10

x1, x2, x3, x4, x5, x6 ≥ 0

We solve this problem by the simplex method.

x1 x2 x3 x4

w 18 −3 −3 −1 −1

x5 8 −2 −1 −1 0

x6 10 −1 −2 0 −1

Pivot at (1, 1)

x5 x2 x3 x4

w 6 3
2 −3

2
1
2 −1

x1 4 −1
2 −1

2 −1
2 0

x6 6 1
2 −3

2
1
2 −1

Pivot at (2, 2)

x5 x6 x3 x4

w 0 1 1 0 0

x1 2 −2
3

1
3 −2

3
1
3

x2 4 1
3 −2

3
1
3 −2

3

The artificial problem has optimal value w∗ = 0, and the set of basic variables does not contain

the artificial variables x5 and x6. Hence, (x1, x2, x3, x4) = (2, 4, 0, 0) is a feasible basic solution of the

problem in standard form.

We now solve the problem in standard form by the simplex method.

x3 x4

z −18 −2
3

7
3

x1 2 −2
3

1
3

x2 4 1
3 −2

3

Pivot at (1, 1)

x1 x4

z −20 1 2

x3 3 −3
2

1
2

x2 5 −1
2 −1

2

Therefore, the problem in standard form attains the optimal value −20 at (x1, x2, x3, x4) = (0, 5, 3, 0).

The original problem attains the optimal value 20 at (x1, x2) = (0, 5).

(b) The standard form is given as follows.

minimize z = − x1 − 4x2

subject to 2x1 + x2 − x3 = 8

x1 + 2x2 − x4 = 10

x1, x2, x3, x4 ≥ 0

From the standard form, we construct the following artificial problem.



minimize w = x5 + x6

subject to 2x1 + x2 − x3 + x5 = 8

x1 + 2x2 − x4 + x6 = 10

x1, x2, x3, x4, x5, x6 ≥ 0

We solve this problem by the simplex method.

x1 x2 x3 x4

w 18 −3 −3 1 1

x5 8 −2 −1 1 0

x6 10 −1 −2 0 1

Pivot at (1, 1)

x5 x2 x3 x4

w 6 3
2 −3

2 −1
2 1

x1 4 −1
2 −1

2
1
2 0

x6 6 1
2 −3

2 −1
2 1

Pivot at (2, 2)

x5 x6 x3 x4

w 0 1 1 0 0

x1 2 −2
3

1
3

2
3 −1

3

x2 4 1
3 −2

3 −1
3

2
3

The artificial problem has optimal value w∗ = 0, and the set of basic variables does not contain

the artificial variables x5 and x6. Hence, (x1, x2, x3, x4) = (2, 4, 0, 0) is a feasible basic solution of the

problem in standard form.

We now solve the problem in standard form by the simplex method.

x3 x4

z −18 2
3 −7

3

x1 2 2
3 −1

3

x2 4 −1
3

2
3

Pivot at (1, 2)

x3 x1

z −32 −4 7

x4 6 2 −3

x2 8 1 −2

As x3 increases, both x2 and x4 increases as well, and thus the problem is unbounded (that is, the

objective value can be decreased without bound).


