

Large-Scale Knowledge Processing
Optimization Techniques (4)
Practice Brief Solutions

p.7 Practice

(a) The dual problem is given as follows.

$$\begin{array}{llll} \text{minimize} & z = 7y_1 + 8y_2 + 9y_3 \\ \text{subject to} & y_1 + y_3 \geq 4 \\ & 2y_1 + y_2 \geq 3 \\ & 2y_2 + y_3 = 2 \\ & y_1 : \text{free variable}, y_2, y_3 \geq 0 \end{array}$$

(b) The dual problem is given as follows.

$$\begin{array}{llll} \text{maximize} & z = 7y_1 + 8y_2 + 9y_3 \\ \text{subject to} & y_1 + y_3 \leq 4 \\ & 2y_1 + y_2 \leq 3 \\ & 2y_2 + y_3 = 2 \\ & y_1 : \text{free variable}, y_2, y_3 \geq 0 \end{array}$$

p.8 Practice

(1-a) The standard form is given as follows.

$$\begin{array}{llll} \text{minimize} & z = -x_1 - 2x_2 \\ \text{subject to} & -x_1 - x_2 + x_3 = 1 \\ & x_1, x_2, x_3 \geq 0 \end{array}$$

Therefore, the dual problem is given as follows.

$$\begin{array}{llll} \text{maximize} & w = y_1 \\ \text{subject to} & -y_1 \leq -1 \\ & -y_1 \leq -2 \\ & y_1 \leq 0 \\ & y_1 : \text{free variable} \end{array}$$

(1-b) The standard form is given as follows.

$$\begin{array}{llll} \text{minimize} & z = -x_1 - 2x_2 \\ \text{subject to} & -x_1 - x_2 - x_3 = 1 \\ & x_1, x_2, x_3 \geq 0 \end{array}$$

Therefore, the dual problem is given as follows.

$$\begin{array}{llll} \text{maximize} & w = y_1 \\ \text{subject to} & -y_1 \leq -1 \\ & -y_1 \leq -2 \\ & -y_1 \leq 0 \\ & y_1 : \text{free variable} \end{array}$$

(1-c) The standard form is given as follows.

$$\begin{array}{llll} \text{minimize} & z = -4x_1 - 2x'_2 + 2x''_2 \\ \text{subject to} & 2x_1 + 2x'_2 - 2x''_2 + s_1 = 4 \\ & 3x_1 + 6x'_2 - 6x''_2 - s_2 = 9 \\ & x_1, x'_2, x''_2, s_1, s_2 \geq 0 \end{array}$$

Therefore, the dual problem is given as follows.

$$\begin{aligned}
\text{maximize } & w = 4y_1 + 9y_2 \\
\text{subject to } & 2y_1 + 3y_2 \leq -4 \\
& 2y_1 + 6y_2 \leq -2 \\
& -2y_1 - 6y_2 \leq 2 \\
& y_1 \leq 0 \\
& -y_2 \leq 0 \\
& y_1, y_2 : \text{free variables}
\end{aligned}$$

(1-d) The standard form is given as follows.

$$\begin{aligned}
\text{minimize } & z = -3x_1 - 5x_2 - 4x'_3 + 4x''_3 \\
\text{subject to } & 4x_1 + 2x_2 + 3x'_3 - 3x''_3 + s_1 = 6 \\
& -3x_1 + 4x_2 - 5x'_3 + 5x''_3 - s_2 = 2 \\
& x_1, x_2, x'_3, x''_3, s_1, s_2 \geq 0
\end{aligned}$$

Therefore, the dual problem is given as follows.

$$\begin{aligned}
\text{maximize } & w = 6y_1 + 2y_2 \\
\text{subject to } & 4y_1 - 3y_2 \leq -3 \\
& 2y_1 + 4y_2 \leq -5 \\
& 3y_1 - 5y_2 \leq -4 \\
& -3y_1 + 5y_2 \leq 4 \\
& y_1 \leq 0 \\
& -y_2 \leq 0 \\
& y_1, y_2 : \text{free variables}
\end{aligned}$$

(1-e) The standard form is given as follows.

$$\begin{aligned}
\text{minimize } & z = -4x_1 - 5x_2 \\
\text{subject to } & 2x_1 + 2x_2 + x_3 = 4 \\
& 3x_1 + 6x_2 + x_4 = 8 \\
& x_1 + 4x_2 + x_5 = 4 \\
& x_1, x_2, x_3, x_4, x_5 \geq 0
\end{aligned}$$

Therefore, the dual problem is given as follows.

$$\begin{aligned}
\text{maximize } & w = 4y_1 + 8y_2 + 4y_3 \\
\text{subject to } & 2y_1 + 3y_2 + y_3 \leq -4 \\
& 2y_1 + 6y_2 + 4y_3 \leq -5 \\
& y_1 \leq 0 \\
& y_2 \leq 0 \\
& y_3 \leq 0 \\
& y_1, y_2, y_3 : \text{free variables}
\end{aligned}$$

(1-f) The standard form is given as follows.

$$\begin{aligned}
\text{minimize } & z = -4x_1 - 2x_2 \\
\text{subject to } & x_1 + x_2 + x_3 = 8 \\
& x_1 + x_4 = 6 \\
& x_1 + 2x_2 - x_5 = 2 \\
& x_1, x_2, x_3, x_4, x_5 \geq 0
\end{aligned}$$

Therefore, the dual problem is given as follows.

$$\begin{aligned}
\text{maximize} \quad & w = 8y_1 + 6y_2 + 2y_3 \\
\text{subject to} \quad & y_1 + y_2 + y_3 \leq -4 \\
& y_1 + 2y_3 \leq -2 \\
& y_1 \leq 0 \\
& y_2 \leq 0 \\
& -y_3 \leq 0 \\
& y_1, y_2, y_3 : \text{free variables}
\end{aligned}$$

(2) See p. 6 of the slide.

p.15 Practice

The standard form of this problem is given as follows.

$$\begin{aligned}
\text{minimize} \quad & z = -x_1 - 2x_2 \\
\text{subject to} \quad & x_1 + x_2 - x_3 = 1 \\
& x_1, x_2, x_3 \geq 0
\end{aligned}$$

The dual problem of this standard form is given as follows.

$$\begin{aligned}
\text{maximize} \quad & w = y_1 \\
\text{subject to} \quad & y_1 \leq -1 \\
& y_1 \leq -2 \\
& -y_1 \leq 0 \\
& y_1 : \text{free variable}
\end{aligned}$$

There exists no value of y_1 that satisfies all three constraints simultaneously. Hence, the dual problem is infeasible.

The infeasibility of the dual problem can also be confirmed by converting the dual problem into its standard form and applying the two-phase method.

p.15 Practice

(a) The dual problem of this standard form is given as follows.

$$\begin{aligned}
\text{minimize} \quad & z = -x_1 - 2x_2 \\
\text{subject to} \quad & -x_1 - x_2 + x_3 = 1 \\
& x_1, x_2, x_3 \geq 0
\end{aligned}$$

The dual problem of this standard form is given as follows.

$$\begin{aligned}
\text{maximize} \quad & w = y_1 \\
\text{subject to} \quad & -y_1 \leq -1 \\
& -y_1 \leq -2 \\
& y_1 \leq 0 \\
& y_1 : \text{free variable}
\end{aligned}$$

Since there is no value of y_1 that satisfies all three constraints, the dual problem is infeasible.

The primal problem is unbounded, whereas the dual problem is infeasible.

(b) The standard form of this problem is given as follows.

$$\begin{aligned}
\text{minimize} \quad & z = -x_1 - 2x_2 \\
\text{subject to} \quad & -x_1 - x_2 - x_3 = 1 \\
& x_1, x_2, x_3 \geq 0
\end{aligned}$$

The dual problem of this standard form is given as follows.

$$\begin{aligned} \text{maximize} \quad w &= y_1 \\ \text{subject to} \quad -y_1 &\leq -1 \\ &-y_1 \leq -2 \\ &-y_1 \leq 0 \\ &y_1 : \text{free variable} \end{aligned}$$

Since the three constraints are satisfied for any $y_1 \geq 2$, the objective value can be made arbitrarily large. Hence, the dual problem is unbounded.

The primal problem is infeasible, whereas the dual problem is unbounded.