

Faculty of Information Science and Technology, Hokkaido Univ. Takashi Horiyama Kazuhisa Seto

Large-Scale Knowledge Processing

Course objectives

- This lecture aims to learn the techniques of knowledge processing, which are essential to intellectual information processing, such as editing, classifying, analyzing, and indexing of knowledge.
- Topics on large-scale knowledge processing: (Lectures are given in parallel or sequentially.)
 - Optimization techniques
 - Fundamentals of Boolean functions and computational complexity
 - Exact algorithms and approximation algorithms
 - Manupulation of discrete structure by BDDs/ZDDs
- Report assignments will be assigned.

Quiz: s-t path (shortest path)

Q: Enumerate (or count) all shortest paths

from s to t

Quiz: s-t path (shortest path)

Q: Enumerate (or count) all shortest paths

Any combination of $\mathbf{+} \mathbf{+} \mathbf{+} \mathbf{+} \mathbf{+} \mathbf{+} \mathbf{+}$

gives a shortest path

#(shortest path) is
$${}_{6}C_{3} = \frac{6 \cdot 5 \cdot 4}{3 \cdot 2 \cdot 1} = 20$$

from s to t

Quiz: s-t path (shortest path)

- Q: Enumerate (or count) all shortest paths
 - Detours are allowed
 - Self avoiding: Any path cannot go through the same vertex twice (or more)

from s to t

 There is no formula for counting the number of paths (The answer of the above problem is 184)

Find all solutions satisfying the given conditions

What is required

- Enumerate efficiently (Time complexity)
- Store the solutions compactly (Space complexity)
- Use the solutions easily
 - How many ? / Sampling
 - Retrieve the solutions by various queries

Ex.) s-t path (Self-avoiding path) Grid graph 17 6,344,814, #(s-t paths) S 611,237,963,971,310,297,540, 795,524,400,449,443,986,866, 17 480,693,646,369,387,855,336 Approx. 6.3×10^{61} (63 那由他)

What is required

"Sufficiently large number" in Sanskrit

- Enumerate efficiently (Time complexity)
- Store the solutions compactly (Space complexity)
- Use the solutions easily
 - How many ? / Sampling
 - Retrieve the solutions by various queries

#(s-t paths)

#(s-t paths)

Algorithms for large-scale knowledge processing

- How to solve the problems (= strategies)
 - Why algorithms are **important**?
 - Improve implementations: 2x or 3x speed-up
 Improve algorithms: 1000x speed-up
 → We can handle larger/practical problems
 - Basic theory can connect to various applications
 - Ex.) "Electoral district" and "disaster evacuation site"
 - Developments" and "origami by cells"

Electoral district

4,893,281,393,039,250,022,519,012,101,206 ways for partitioning Osaka prefecture (We cannot store them in the usual way) We can find all of them in 0.34 seconds.

Political equality

7 districts

Ex.: Ibaraki

41 regions

- Not all at once
- Step-by-step approach

Partition into districts with almost equal populations according to the census results

Ex.: model the problem as a partition of a graph

We are interested in the gap. Many ways for partitioning or not ? 13

Similar ideas can be applied to other areas

Evacuation plan (Allocation of evacuation sites)

Ex.: model the problem as a partition of a graph

Floor plan

Folding Mechanism

Packages

Folding Mechanism

Packages

Satellite panel (Miura fold)

Architecture

Canned beverage Yoshimura pattern)

Air bag

Research on Origami

Algorithmic design of self-folding polyhedra

Shivendra Pandey^a, Margaret Ewing^b, Andrew Kunas^c, Nghi Nguyen^d, David H. Gracias^{a,e,1}, and Govind Menon¹¹

"Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218; "School of Mathematics, University of Minnesota, Minneapolis, MN 55455; "Department of Computer Science, Brown University, Providence, RI 02912; "Department of Mathematics and Statistic, University of Masachusetts, Anherst, MA 01003; "Department of Chemistry, The Johns Hopkins University, Baltimore, MD 21218; and "Division of Applied Mathematics, Brown University, Providence, RI 02906

Developments of polyhedra

11 ways for a cube

Q.2 How many ways for a soccer ball?

A. 3,127,432,220,939,473,920

This class: From the viewpoint of discrete structures

- Support our society by algorithms

 (algorithms on enumeration/optimization and their complexity)
- Various connections with our society

Discrete structure

How to **represent/manipulate discrete structure** (combinations, graphs, and so on)

Various applications **Electoral district Evacuation plan** Minumum Current 1.016 1.733 Ratio Computational origami Origami with cells