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Mathematical programming
                        and optimization
 Mathematical programming model

◼ Find the optimal solution

◼ What is the target for the optimization ?

◼ Objective of the optimization ?



Production planning problem

◼ Maximum profit ?
    We produce two products 1 and 2
    from two materials A and B

◼ Material usage per unit of product
and the amount of available materials

◼ Profit per unit of product

◼  Product 1： 4

◼  Product 2： 5 3

Product 1
(103 kg)

Product 2
(103 kg)

Available 
materials
(103 kg)

Material A 2 2 4

Material B 3 6 8



Formulation of production planning

◼ Represent as mathematical models

◼ Let x1, x2 be the volumes of products 1, 2

◼ Objective： Maximize the profit

◼ Maximize 4 x1 + 5 x2

◼ Condition： Available materials

◼ Material A： 2 x1 + 2 x2 ≦ 4

◼ Material B： 3 x1 + 6 x2 ≦ 8

◼ Condition： Volumes of the products should be non-negative

◼ Product 1 ： x1 ≧ 0

◼ Product 2： x2 ≧ 0
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◼ Let x1, x2 be the volumes of products 1, 2

◼ maximize 4 x1 + 5 x2

subject to 2 x1 + 2 x2 ≦ 4

                      3 x1 + 6 x2 ≦ 8

                      x1 ≧ 0,  x2 ≧ 0

◼ Linear programming problem

◼ Objective function is a linear function

◼ maximize or minimize the objective function

◼ All constraints are linear inequalities or equalities
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← Objective function

← Constraints

← decision variables, variables

Formulation of production planning



◼ If the volumes of the products are limited to integers ...

◼ maximize 4 x1 + 5 x2

subject to 2 x1 + 2 x2 ≦ 4

                      3 x1 + 6 x2 ≦ 8

                      x1 ≧ 0,  x2 ≧ 0,   x1, x2 are integers

◼ Integer programming problem
◼ Variables are limited to be integers
◼ 0-1 integer programming problem

… Variables are 0 or 1

◼ Mixed integer programming problem
… Some variables are integers/Others are real numbers 6

Production planning problem



◼ Maximum profit ?
    We produce three products 1, 2 and 3
    from four materials A, B, C and D

◼ Material usage per unit of product
and the amount of available materials

◼ Profit per unit of product

◼ Product 1： 3, Product 2： 5,   Product 3： 4 7

Product 1
(103 kg)

Product 2
(103 kg)

Product 3
(103 kg)

Available 
Material

(103 kg)

Material A 4 2 1 6

Material B 1 2 4 7

Material C 5 2 3 9

Material D 3 3 2 8

practice： Formulation of product planning



◼ Maximum profit ?
    We produce n kinds of products P1, P2, ..., Pn 
    from m kinds of materials S1, S2, ..., Sm 

◼ cij :  Necessary amount of material Sj 
       for producing a unit of product Pi 

◼ bj :  Available amount of material Sj

◼ ai :   Profit per unit of product Pi 
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practice： Formulation of product planning



Transportation problem

◼ Transport products
 from factories 1, 2, 3
 to consumers 1, 2, 3, 4, 5

◼ Minimize transportation costs

◼ ai : The amount of products factory i can ship

          in a month

◼ bj : Demand by consumer j in a month

◼ cij : Transportation cost (per unit of product)

         from factory i to consumer j 9

a1 a2 a3

b1 b3 b5b2 b4



Transportation problem

◼ Let xij be the amount
of the products shipped
from factory i to consumer j

◼ minimize Σ  Σ  cij xij

    subject to   Σ  xij ≦ ai   (i = 1, 2, 3)

                     Σ xij ≧ bj   (j = 1, 2, ..., 5)

                      xij ≧ 0   (i = 1, 2, 3,  j = 1, 2, ..., 5)

i = 1

3

j = 1

5

j = 1

5

i = 1

3

Factory i

Consumer j
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a1 a2 a3

b1 b3 b5b2 b4



Facility location problem

◼ In the problem in p. 9
we need cost di 
for running factory i 

     (In case we do not use factory i,
        its cost becomes 0)

◼ We need to minimize the sum
of the transportation cost
and the running cost of the factories
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a1 a2 a3

b1 b3 b5b2 b4

d1 d2 d3



Formulation of facility location problem

◼ xij : the amount from factory i to consumer j
yi : run factory i, or not
(yi = 1 … run factory i,  yi = 0 … do not use factory i )

◼ minimize Σ  Σ  cij xij +  Σ di yi

    subject to   Σ  xij ≦ ai yi 

                      Σ xij ≦ ai 

                      Σ xij  = 0 

i = 1

3

j = 1

5

j = 1

5

Factory i
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i = 1

3

j = 1

5

j = 1

5

Run factory i (yi = 1)

Do not use factory i  (yi = 0)



◼ xij : the amount from factory i to consumer j
yi : run factory i, or not
(yi = 1 … run factory i,  yi = 0 … do not use factory i )

◼ minimize Σ  Σ  cij xij +  Σ di yi

    subject to   Σ  xij ≦ ai yi  (i = 1, 2, 3)

                     Σ xij ≧ bj   (j = 1, 2, ..., 5)

                      xij ≧ 0    (i = 1, 2, 3,  j = 1, 2, ..., 5)

                      yi ∊ {0, 1}  (i = 1, 2, 3)

i = 1

3

j = 1

5

j = 1

5

i = 1

3
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i = 1

3

Formulation of facility location problem

Factory i

Consumer j
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Linear programming

◼ How to solve linear programming problem ?



Practice： Solve by drawing

160

1

1 2 3
x1

x2

2

Feasible
region

( 4/3, 2/3 )

◼ maximize 4 x1 + 5 x2

subject to 2 x1 + 2 x2 ≦ 4

                        3 x1 + 6 x2 ≦ 8

                        x1 ≧ 0,  x2 ≧ 0

◼ Optimal solution ?

     ( x1, x2 ) =

◼ Optimal value ?



◼ maximize 4 x1 + 5 x2

subject to 2 x1 + 2 x2 ≦ 4

                        3 x1 + 6 x2 ≦ 8

                        x1 ≧ 0,  x2 ≧ 0

                         x1, x2 are integers
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1

1 2 3
x1

x2

2

Feasible set

Practice： Solve by drawing  (Integer programming)

◼ Optimal solution ?

     ( x1, x2 ) =

◼ Optimal value ?



(a) maximize 4 x1 + 5 x2

subject to 2 x1 + 2 x2 ≦ 4

                         3 x1 + 6 x2 ≦ 8

                             x1 + 4 x2 ≦ 4

                         x1 ≧ 0,  x2 ≧ 0

(c) maximize 4 x1 + 2 x2

subject to x1 +    x2 ≦ 8

                         x1           ≦ 6

                             x1 + 2 x2 ≧ 2

                         x1 ≧ 0,  x2 ≧ 0
20

Practice： Solve by drawing

(b)  Change prob. (a)

      to minimization
      problem

(d)  Change prob. (c)

to minimize

       problem



◼ Solve the linear programming problem in slide 7

◼ 3-dimensional space

◼ 4 x1 + 2 x2 + x3 ≦ 6
… half space cut by a plane

◼ It is very difficult to solve linear programming 
problems with 3 (or more) variables by drawing …
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Advanced： Solve by drawing （let’s challenge)
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Linear programming
 Standard form



Standard form

◼ We can translate all linear programming problems 
into their standard forms

◼ minimize z  =  Σ  cj xj

    subject to   Σ aij xj = bi    (i = 1, 2, ..., m)

                       xj ≧ 0            (j = 1, 2, ..., n)

    ただし、 bi ≧ 0

j = 1

n

j = 1

n
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(※ Do not forget this)



Ex.) Transformation

◼ maximize    z = 2 x1 – 3 x2 – 4 x3

     subject to       2 x1 +    x2 – 3 x3 ≦ 4

                                x1 –    x2 + 4 x3 ≧ 5

                             x1, x2 ≧ 0,  x3: free variable

◼ maximize    z =  2 x1 – 3 x2 – 4 x3

◼ minimize     z = -2 x1 + 3 x2 + 4 x3
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Use “minimize”



◼ maximize    z = 2 x1 – 3 x2 – 4 x3

     subject to       2 x1 +    x2 – 3 x3 ≦ 4

                                x1 –    x2 + 4 x3 ≧ 5

                             x1, x2 ≧ 0,  x3: free variable

◼ 2 x1 + x2 – 3 x3 ≦ 4

◼ 2 x1 + x2 – 3 x3 + s1 = 4,  s1 ≧ 0
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Ex.) Transformation  (cont.)

introduce a 
slack variable



◼ maximize    z = 2 x1 – 3 x2 – 4 x3

     subject to       2 x1 +    x2 – 3 x3 ≦ 4

                                x1 –    x2 + 4 x3 ≧ 5

                             x1, x2 ≧ 0,  x3: free variable

◼ 2 x1 + x2 – 3 x3 ≦ 4

◼ 2 x1 + x2 – 3 x3 + s1 = 4,  s1 ≧ 0

◼ x1 – x2 + 4 x3 ≧ 5

◼ x1 – x2 + 4 x3 - s2 = 5,  s2 ≧ 0
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Ex.) Transformation  (cont.)

introduce a 
slack variable

introduce a 
surplus variable

Both variables are
called slack variables
in many cases



◼ maximize    z = 2 x1 – 3 x2 – 4 x3

     subject to       2 x1 +    x2 – 3 x3 ≦ 4

                                x1 –    x2 + 4 x3 ≧ 5

                             x1, x2 ≧ 0,  x3: free variable

◼ 2 x1 + x2 – 3 x3 ≦ 4

◼ 2 x1 + x2 – 3 x3 + s1 = 4,  s1 ≧ 0

◼ x1 – x2 + 4 x3 ≧ 5

◼ x1 – x2 + 4 x3 - s2 = 5,  s2 ≧ 0

◼ 2 x1 + x2 – 3 x3’ + 3 x3’’ + s1 = 4

◼ x1 – x2 + 4 x3’ – 4 x3’’ - s2 = 5,  x3’, x3’’ ≧ 0
27

introduce non-
negative variables

Ex.) Transformation  (cont.)

introduce a 
slack variable

introduce a 
surplus variable

Both variables are
called slack variables
in many cases



◼ maximize    z = 2 x1 – 3 x2 – 4 x3

     subject to       2 x1 +    x2 – 3 x3 ≦ 4

                                x1 –    x2 + 4 x3 ≧ 5

                             x1, x2 ≧ 0,  x3: free variable

◼ minimize     z = -2 x1 + 3 x2 + 4 x3’ – 4 x3’’ 

     subject to    2 x1 +    x2 – 3 x3’ + 3 x3’’ + s1      = 4

                            x1 –    x2 + 4 x3’ – 4 x3’’      - s2 = 5

                             x1, x2, x3’, x3’’, s1, s2 ≧ 0

28

Ex.) Transformation  (summary)



practice： Standard form

(a) maximize    z = 4 x1 + 2 x2

     subject to        2 x1 + 2 x2 ≦ 4

                            -3 x1 - 6 x2 ≦ -9

                             x1 ≧ 0,  x2: free variable

(b) maximize    z = 3 x1 + 5 x2 + 4 x3

     subject to        4 x1 + 2 x2 + 3 x3 ≦ 6

                            3 x1 - 4 x2 + 5 x3 ≦ -2

                             x1 ≧ 0, x2 ≧ 0, x3: free variable
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Summary

◼ Formulation of the problems

◼ Linear programming problem

◼ Integer programming problem

◼ Solve linear programming problems

◼ Solve by drawing

◼ It is very difficult to solve linear programming 
problems with 3 (or more) variables

◼ Standard form of a linear programming problem

◼ Any linear programming problem can be 
transformed into its standard form

30
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