Large-Scale Knowledge Processing #5 Optimization Techniques (Part 2)

Faculty of Information Science and Technology, Hokkaido Univ. Takashi Horiyama

Prev. class + α : Linear Programming Problem Standard form

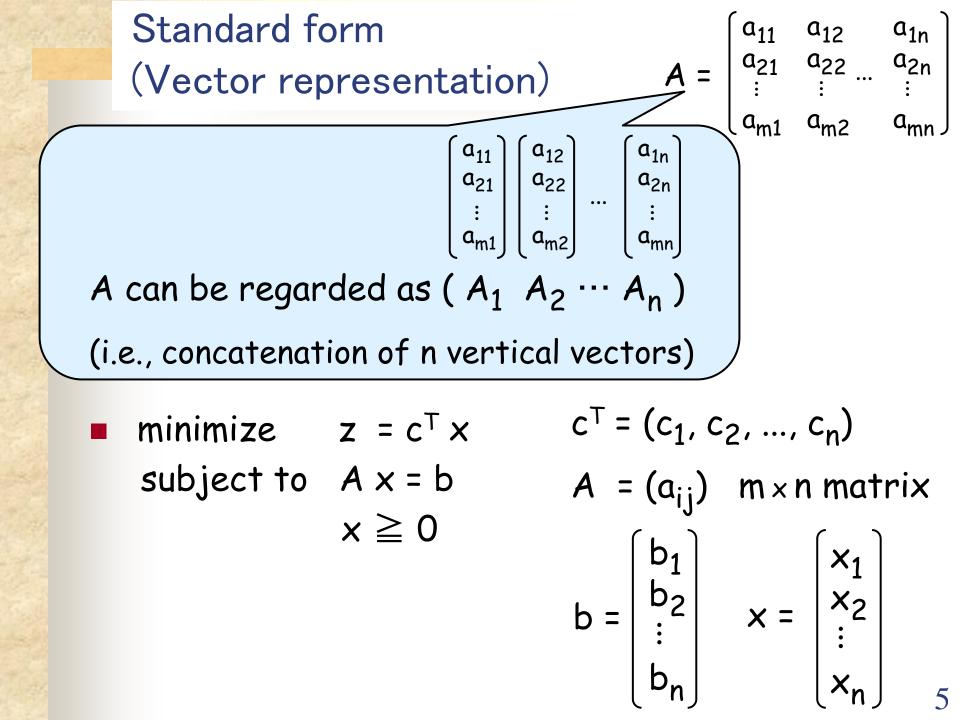
0

Ex.) Standard form (Vector representation)

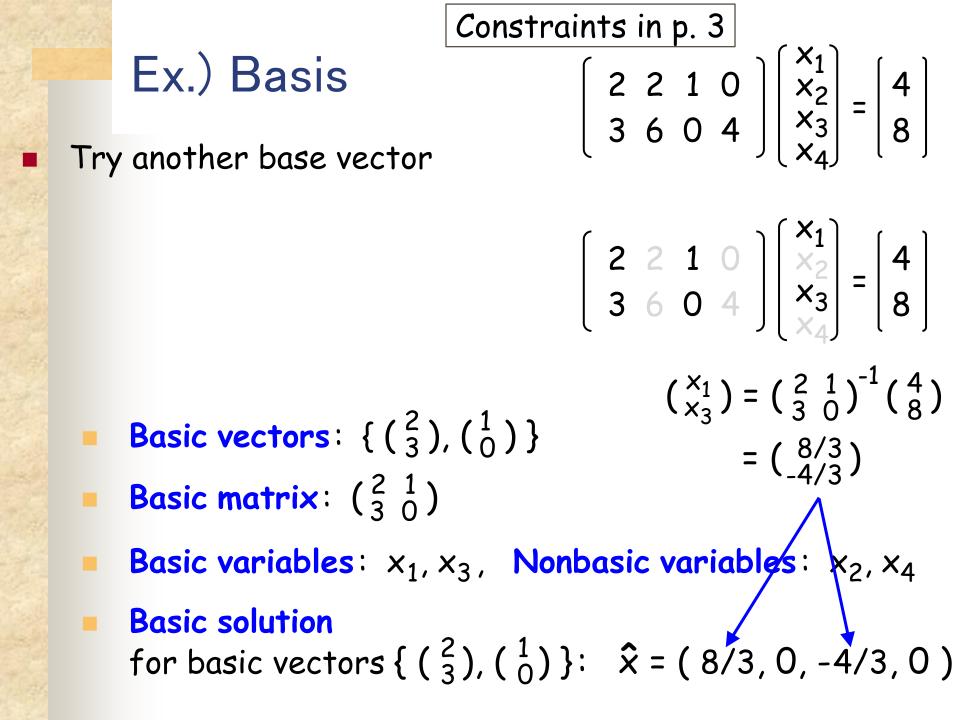
minimize $z = -4 x_1 - 5 x_2$ subject to $2x_1 + 2x_2 + x_3 = 4$ $3x_1 + 6x_2 + 4x_4 = 8$ $x_{j} \ge 0$ (j = 1, 2, ..., 4) minimize $z = (-4 - 5 0 0) \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$ subject to $\begin{bmatrix} 2 & 2 & 1 & 0 \\ 3 & 6 & 0 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 4 \\ 8 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \ge \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$

Standard form
(Vector representation)
minimize
$$z = \sum_{j=1}^{n} c_j x_j$$

subject to $\sum_{j=1}^{n} a_{ij} x_j = b_i$ (i = 1, 2, ..., m)
 $x_j \ge 0$ (j = 1, 2, ..., n)
minimize $z = c^T x$
subject to $A x = b$
 $x \ge 0$
 $A = \begin{pmatrix} a_{11} & a_{12} & a_{1n} \\ a_{21} & a_{22} & a_{2n} \\ \vdots \\ a_{m1} & a_{m2} & a_{mn} \end{pmatrix}$
 $A = \begin{pmatrix} a_{m1} & a_{m2} & a_{mn} \end{pmatrix}$
 $A = \begin{pmatrix} c_{11} & c_{12} & \cdots & c_{m} \end{pmatrix}$
 $A = (a_{1j}) m \times n matrix$
 $A = \begin{pmatrix} a_{1j} & m \times n matrix \\ x_{2} \\ \vdots \\ b_{n} \end{pmatrix}$
 $A = \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{pmatrix}$



(Constraints in p. 3		
Ex.) Basis	$\begin{bmatrix} 2 & 2 & 1 & 0 \\ 3 & 6 & 0 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 4 \\ 8 \end{bmatrix}$		
Infinitely many assignment	5		
to (x_1, x_2, x_3, x_4) satisfying the 2 conditions			
In case (x ₃ , x ₄) = (0, 0)			
i.e., if we focus on x ₁ ,			
$\rightarrow (x_1, x_2, x_3, x_4) \text{ is uniquely obtained} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 2 & 2 \\ 3 & 6 \end{pmatrix}^{-1} \begin{pmatrix} 4 \\ 8 \end{pmatrix}$			
Basic vectors: $\{(\frac{1}{3}), (\frac{1}{3})\}$	$\binom{2}{6}$ = $\binom{4/3}{2/3}$		
Basic matrix: $\begin{pmatrix} 2 & 2 \\ 3 & 6 \end{pmatrix}$			
Basic variables: x ₁ , x ₂ , Nonbasic variables: x ₃ , x ₄			
Basic solution for basic vectors { (² / ₃)), $\binom{2}{6}$: $\hat{\mathbf{x}} = (\frac{4}{3}, \frac{2}{3}, 0, 0)$		



Supplementary information

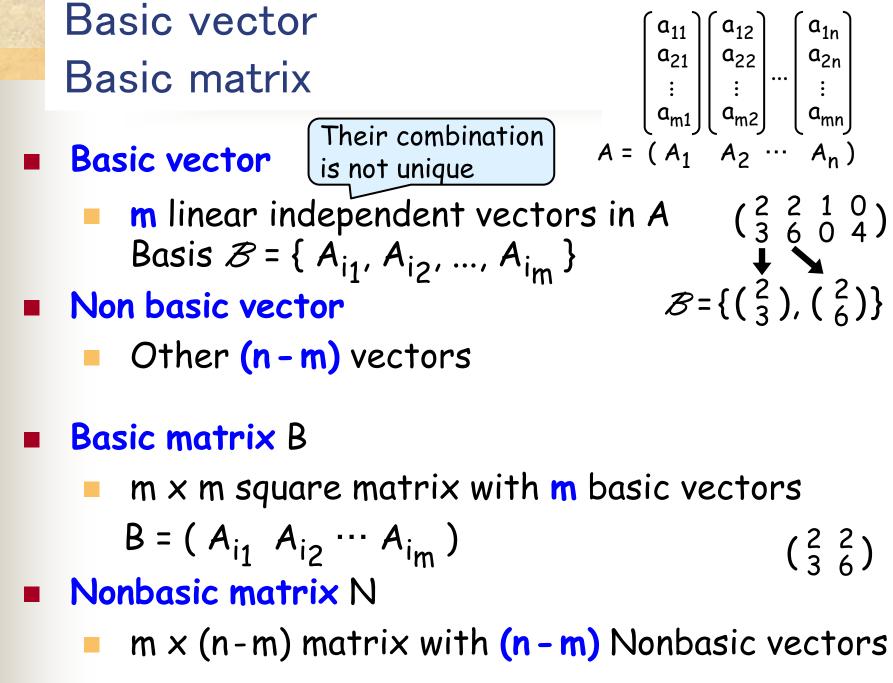
Some basic matrix may not have the inverse matrix

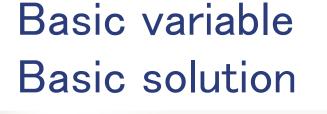
$$\begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix} \qquad \begin{bmatrix} 1 \\ 3 \end{bmatrix}_{and} \begin{bmatrix} 2 \\ 6 \end{bmatrix}$$
 are linear dependent (not independent)

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{1n} \\ a_{21} & a_{22} & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{mn} \end{bmatrix}$$

Assumption 1: $n \ge m$

- Assumption 2: the rank of A is m
- We can relat the one llater Assumption 3: optimal solution exists \int





$$x_{B} = (x_{1}, x_{2})$$

 $x_{N} = (x_{3}, x_{4})$
 $\hat{x} = (8/3, 2/3, 0, 0)$

Basic variable

- m basic variables x_{i1}, x_{i2}, ..., x_{im} corresponding to m basic vectors A_{i1}, A_{i2}, ..., A_{im}
 m-dimensional vector x_B = (x_{i1}, x_{i2}, ..., x_{im})
- Nonbasic variable
 - Other (n-m) variables
 - (n-m)-dimensional vector x_N

Basic solution $\hat{\mathbf{x}}$ for basis $\mathcal{B} = \{A_{i_1}, A_{i_2}, ..., A_{i_m}\}$ $\mathbf{x}_j = \begin{cases} 0 & (A_j \notin \mathcal{B}) \\ \text{l-th element of } B^{-1} b & (A_j \in \mathcal{B}, \mathbf{x}_j = \mathbf{x}_{i_l}) \\ \hline \text{Solution of } B\mathbf{x} = b & 10 \end{cases}$

Standard form in p. 3

practice: Basic solution

- $A_1 = \begin{pmatrix} 2 \\ 3 \end{pmatrix}, A_2 = \begin{pmatrix} 2 \\ 6 \end{pmatrix}, A_3 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, A_4 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$
- A₁, A₂ independent : rank(A₁A₂) = m (determinant ≠ 0)
 Solve (A₁ A₂) (⁴₈) = (^{x₁}_{x₂}) : we have x₁ = , x₂ =
 Basic solution for A₁, A₂ is x^T = (, , ,)
- All basic elements (elements of basic solution) are non-negative → basic feasible solution

practice: Basic solution

- From the conditions of the problem in p. 3, we have 4 vectors A₁ ~ A₄. We have 6 ways for choosing 2 basic vectors A_i and A_j. For each of them, find basic solutions.
- From each of the above basic solutions, obtain the coordinate (x₁, x₂). Find such coordinates in the graph of the original optimization problem.

Original
optimization prob.
$$\begin{array}{l} \text{maximize} & 4 \times_1 + 5 \times_2 \\ \text{subject to} & 2 \times_1 + 2 \times_2 \leq 4 \\ & 3 \times_1 + 6 \times_2 \leq 8 \\ & \times_1 \geq 0, \ \times_2 \geq 0 \end{array}$$

Standard form in p. 3

Standard form, basic solution

$ \begin{array}{c} A \times = b \\ \times \ge 0 \\ A_1 A_2 A_3 \\ \begin{pmatrix} 2 \\ 3 \end{pmatrix} \begin{pmatrix} 2 \\ 6 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \\ \end{array} $		$2x_1 + 2x_2$	$+ x_3 = 4$ + $x_4 = 8$
basic solution A ₁ , A ₂	-		imize $z = 4 x_1 + 5 x_2$ ect to $2 x_1 + 2 x_2 \le 4$ $3 x_1 + 6 x_2 \le 8$ $x_1, x_2 \ge 0$
 A₁, A₃ A₁, A₄ A₂, A₃ A₂, A₄ A₃, A₄ 	$\begin{array}{c} (3,0) & -3,0\\ (2,0) & 0,2\\ (0,\frac{4}{3},\frac{4}{3},0)\\ (0,2) & 0,-4\\ (0,0) & 4,8 \end{array}$	×2 2 1	Feasible basic solution \rightarrow extreme point of the feasible region $1 \qquad x_{1} \qquad x_{1} \qquad x_{3} \qquad x_{1} \qquad x_{1} \qquad x_{3} \qquad x_{1} \qquad x_{3} \qquad x_{1} \qquad x_{3} \qquad x_{3$

Degeneration of feasible basic solutions

- Feasible basic solution x is degenerate
 - x has more O's than n-m
- Two different basis correspond to the same basic solution x

 \rightarrow x is degenerate

practice: Degeneration

For the problems in Slide #3 p. 20 (a), p. 21
 (1) Transform them into their standard forms
 (2) Check whether they have degenerate feasible basic solution

Degeneration of feasible basic solutions

minimize
$$z = -4 x_1 - 5 x_2$$
subject to
$$2 x_1 + 2 x_2 + x_3 = 4$$

$$3 x_1 + 6 x_2 + x_4 = 8$$

$$A_1 A_2 A_3 A_4 A_5 \qquad x_1 + 4 x_2 + x_5 = 4$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$
maximize $z = 4 x_1 + 5 x_2$
subject to
$$2 x_1 + 2 x_2 \le 4$$

$$3 x_1 + 6 x_2 \le 4$$

$$3 x_1 + 6 x_2 \le 4$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$
maximize $z = 4 x_1 + 5 x_2$
subject to
$$2 x_1 + 2 x_2 \le 4$$

$$x_1 + 4 x_2 \le 4$$

$$x_1, x_2 \ge 0$$
and the set of the set o

practice: Basic solution

- Enumerate all basic solutions for the problem in p. 15
 - We have 5 basic vectors A_1 , A_2 , A_3 , A_4 , A_5

×2

 $\mathbf{0}$

Choose any 3 from these 5

- Feasible basic solution 1 → extreme point of feasible region
- Basis → basic solution
- We can find the optimal solution by checking all basic solutions for all basis

Linear programming Simplex method (Simplex algorithm)

Check all basic solutions ?

 Better ways ? Walk through feasible basic solutions with improving the objective value

preliminaries: Feasible region, extreme point

- Lemma: Feasible region F is convex
- Definition: $x \in F$ is an extreme point
 - The point that cannot be a convex combination of two different points x', x" ∈ F
- Properties:
 - The number of extreme point for any F is finite

 $\overline{\mathbf{0}}$

F can be represented as a convex hull of extreme points

S is convex

∀ x', x'' ∈ S, ∀ α (0 ≤ α ≤ 1)x' + (1 - α) x'' ∈ S

Convex hull of point set S'

Minimum convex region containing S'

Simplex dictionary (Dictionary)

- minimize z = 2 × subject to ×
- Basic solution for $A_2 A_3$ (0, $\frac{9}{4}$, $\frac{9}{2}$, 0) \cdots feasible solution

- Dictionary
 - Solve the conditions for basic variables
- Current objective value

+ substitute them in the objective function

tive value

$$z = 27/4 - 19/4 x_1 - 21/4 x_4$$

 $x_2 = 9/4 - 5/4 x_1 - 7/4 x_4$
 $x_3 = 9/2 - 3/2 x_1 - 5/2 x_4$
Basic variables Values in Nonbasic variables

basic solution

Basis exchange (Pivot operation)

- $z = 27/4 19/4 x_1 21/4 x_4$ $x_2 = 9/4 5/4 x_1 7/4 x_4$
- $x_3 = 9/2 3/2 x_1 5/2 x_4$
- $x_1 = x_4 = 0$ holds in the current basic solution
- The coefficients of x₁, x₄ in the objective function are 19/4, 21/4, respectively
- If we increase x_4 by Δ
 - the objective value decreases: $27/4 21/4 \Delta$
 - If x₄ increases by itself (other variables are fixed), the constraints are not satisfied
 - \rightarrow change basic variables (x₂, x₃) with fixing other nonbasic variables (x₁ = 0)

Basis exchange (Pivot operation)

- z = 27/4 21/4 x₄
- $x_2 = 9/4$ $7/4 x_4$ • $x_3 = 9/2$ - $5/2 x_4$
- Fix other nonbasic variables (x₁ = 0)
 Increase x₄ from 0
 x₂ decreases (when x₄ = 9/7, we have x₂ = 0)
 x₃ decreases (when x₄ = 9/5, we have x₃ = 0)
- Stop at x₄ = 9/7 to keep the feasibility (x_i ≧ 0)
 x₂ = 0, i.e., "x₂ becomes a nonbasic variable"
 x₄ becomes a basic variable

Basis exchange (Pivot operation)

z =
$$27/4 - 19/4 x_1 - 21/4 x_4$$

x₂ = $9/4 - 5/4 x_1 - 7/4 x_4$
x₃ = $9/2 - 3/2 x_1 - 5/2 x_4$

Update a dictionary

- x₂ becomes a nonbasic variable,
 x₄ becomes a basic variable
 - Transform eq. x₂ = ... as eq. x₄ = ... & Substitute x₄ in other equations

$$z = -9/4 + 19/5 x_1 + 7/5 x_2$$

$$x_4 = 9/7 - 5/7 x_1 - 4/7 x_2$$

$$x_3 = 9/5 + 6/5 x_1 - 2/5 x_2$$

practice: Pivot operation

Update the following simplex dictionary so that X₂, X₃ are basic variables and X₁, X₄ are nonbasic variables

$$z = -4 x_1 - 6 x_2$$

$$x_3 = 4 - 2 x_1 - 2 x_2$$

$$x_4 = 9 - 3 x_1 - 6 x_2$$

Optimal dictionary

- All coefficients (of nonbasic variables) in the objective function are positive
 - We cannot decrease objective value

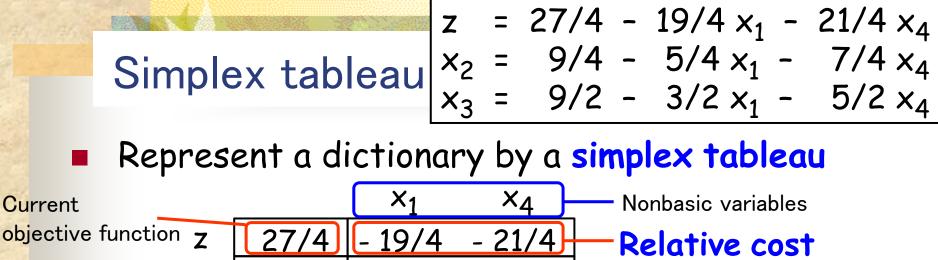
Optimal dictionary

Optimal value

For all feasible solution, x₂, x₄ \geq 0 implies z \geq - 9/4
x^T = (9/5, 0, 9/5, 0) is optimal with z = -9/4

, Optimal solution $x^{T} = (9/5, 0, 9/5, 0)$

z =
$$-\frac{9}{4}$$
 + $\frac{19}{5}x_2$ + $\frac{7}{5}x_4$
x₁ = $\frac{9}{5}$ - $\frac{4}{5}x_2$ - $\frac{7}{5}x_4$
x₃ = $\frac{9}{5}$ + $\frac{6}{5}x_2$ - $\frac{2}{5}x_4$



- 7/4

- 5/2

coefficients

Rates of change of the objective value with respect to the nonbasic variables

(Variable entering

26

the basis)

Pivot operation

X₃

Basic variables

9/4

Values in basic solution

Pivot (r, s) : r-th row & s-th column

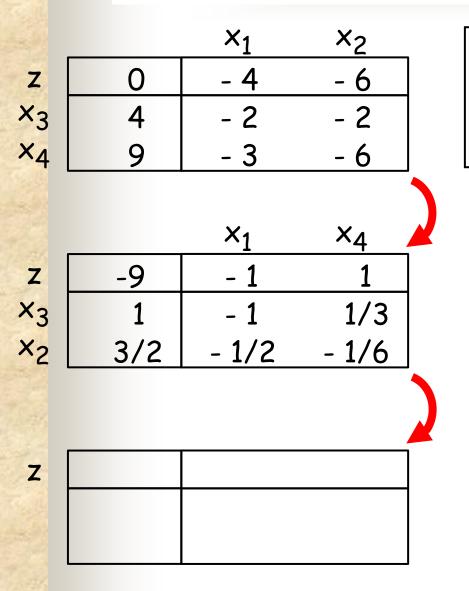
- 5/4

- 3/2

- Exchange the r-th basic var. & the s-th nonbasic var.
- Ex.: Pivot (1, 1) to the above tableau
 - Transform eq. $x_2 = \dots$ as eq. $x_1 = \dots$
 - & Substitute x_1 in other equations

Pivot out variable (Variable exiting from the basis)

Simplex method



minimize $z = -4 x_1 - 6 x_2$ subject to $2x_1 + 2x_2 + x_3 = 4$ $3x_1 + 6x_2 + x_4 = 9$ $x_1, x_2, x_3, x_2 \ge 0$

Pivot (2, 2)

Pivot the 2nd row and 2nd column

Pivot (,)

Summary (2nd half)

- Represent a feasible basic solution

 (an extreme point of the feasible region)
 by a simplex tableau
- Overview of Simplex method
 - Find a starting point:
 Find a feasible basic solution (given in the next class)
 - Pivot operation:
 - Exchange the r-th basic var. & the s-th nonbasic var.
 - \rightarrow Walk through the extreme points
 - (until we cannot improve x_2
 - the objective function)

