Large-Scale Knowledge Processing #6 Optimization Techniques (Part 3)

Faculty of Information Science and Technology, Hokkaido Univ. Takashi Horiyama

Walk through the extreme points from an initial feasible basic solution

Prev. class $+\alpha$: Simplex method

 $0'$ 1 2 3 $\sqrt{3}$ \times 1

2

 $x_{\overline{z}^{\prime}}$

1

Initial feasible basic solution

x_1	x_2		
x_3	4	-2	-2
x_4	8	-3	-6
x_5	4	-1	-4

Pivot

mimimize $z = -4x_1 - 5x_2$ subject to $2x_1 + 2x_2 + x_3$ $= 4$ $3x_1 + 6x_2 + x_4 = 8$ $x_1 + 4x_2 + x_5 = 4$ $x_1, x_2, x_3, x_4, x_5 \ge 0$ $z = -4x_1 - 5x_2$ $x_3 = -2x_1 - 2x_2 + 4$ $x_4 = -3x_1 - 6x_2 + 8$ $x_5 = - x_1 - 4 x_2 + 4$ Increase **x2** from 0 (Fix other nonbasic var. x_1 = 0) x_3 decrease, $x_3 \ge 0$ if $x_2 \le 2$ x_4 decrease, $x_4 \ge 0$ if $x_2 \le 4/3$ x_5 decrease, $x_5 \ge 0$ if $x_2 \le 1$ x2 = - 1/4 x1 – 1/4 **x5** + 1

Initial feasible basic solution ?

General way will be given later

Practice: Simplex method

Solve the following linear programming problems by simplex method

a. The problem in lecture $#5$ slide p. 24 b. $#5$ p. 13 c. $#5$ p. 15 d. #3 p. 7

Linear programming Simplex method

■ Can we solve all linear programming problem?

Situation 1: Feasible region is unbounded

Initial feasible basic solution

mimimize $z = -x_1 - 2x_2$ subject to $x_1 + x_2 \ge -1$ $x_1, x_2 \ge 0$ $-x_1 - x_2 + x_3 = 1$ $x_1, x_2, x_3 \ge 0$ **Standard** form **Original** problem

Increase **x2** from 0 (Fix other nonbasic variables as $x_1 = 0$)

- x_3 increases, always satisfies $x_3 \ge 0$
- \rightarrow Objective value z decreases Feasible region is **unbounded**

z x_3 0 - 1 - 1 - 1 X_1 $- 2$ - 1 $x₂$ x_1 x_2 -1 0 -1 Not a feasible basic solution How to decide the problem is infeasible ??? Situation ²: Infeasible (no feasible solutions) mimimize $z = -x_1 - 2x_2$ subject to $x_1 + x_2 \le -1$ $x_1, x_2 \ge 0$ $-x_1 - x_2 - x_3 = 1$ $x_1, x_2, x_3 \ge 0$ Initial feasible basic solution **Original** problem **Standard** form

Situation ³: Initial feasible basic solution

Formulation of linear programming problems (additional techniques)

max{ } function

- Minimize the maximum of two or more objective functions
	- minimize max $\{ f(x), g(x), h(x) \}$
	- \rightarrow Introduce a new variable z minimize subject to $f(x) \le z$, $g(x) \le z$, $h(x) \le z$

Practice:

n minimize $x_1 + |x_2|$

max{ } function

- Minimize the maximum of two or more objective functions
	- minimize max $\{ f(x), g(x), h(x) \}$
	- \rightarrow Introduce a new variable z minimize subject to $f(x) \le z$, $g(x) \le z$, $h(x) \le z$

Practice: **Constraints** (Mixed integer

programming prob.)

 \blacksquare We have 2 variables x and y, where $x = 0, 1$, and y is a real number with $y \ge 0$. Show constraint inequalities for each of the following constraints

1.
$$
y \ge 30
$$
 when $x = 1$

- 2. $y = 0$ when $x = 0$
- 3. $y \leq 10$ when $x = 0$
- 4. $y \le 10$ when $x = 0$, and $y \ge 30$ when $x = 1$
- 5. $y \le 10$ when $x = 0$, and $y \le 30$ when $x = 1$

Constraints (Mixed integer programming prob.)

- 1. $y \ge 30$ when $x = 1$
	- ◼ **y** ≧ **30 x**

i.e., **- 30 x + y** ≧ **0**

- **■** When $x = 0$, this inequality says $y \ge 0$ (thus, we have no constraint in this case)
	- When $x = 1$, we add constraint $y \ge 30$

Constraints (Mixed integer programming prob.)

- 2. $y = 0$ when $x = 0$
	- ◼ **y** ≦ **M x** (M is a sufficiently large constant) $i.e., -M \times +y \leq 0$
	- **■** When $x = 0$, we have $y \le 0$. As we have $y \ge 0$, we have constraint $y = 0$

3.
$$
y \le 10
$$
 when $x = 0$
- $M x + y \le 10$ (M is a sufficiently large constant)

Constraints (Mixed integer programming prob.)

- 4. $y \le 10$ when $x = 0$, $y \ge 30$ when $x = 1$
	- $-$ **M** \times + $\textbf{y} \leq$ 10, (M is a sufficiently large constant) $-30x + y \ge 0$
	- From the above constraints 1 and 3

5.
$$
y \le 10
$$
 when $x = 0$, $y \le 30$ when $x = 1$
y ≤ 10 (1 - x) + 30 x
i.e., -20 x + y ≤ 10

From Naoki Katoh, Mathematical programming, Corona publishing, p. 58 【7】

We are given n points (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n) in the plane. Each point is colored in red or blue.

Practice: Formulation

- 1. We'd like to obtain a parabola that is convex at the bottom, such that **all red points** are **above** the parabola and **all blue points** are **below** the parabola. Formulate the problem of **finding the equation of such a parabola** (if it exists), as a linear programming problem.
- 2. We'd like to obtain a circle such that all **red points** are **inside the circle** (including the boundary) and all **blue points** are **outside the circle** (including the boundary) Formulate the problem of **determining** whether such a **circle exists** or not, as a linear programming problem.

Formulation (1)

From Naoki Katoh, Mathematical programming, Corona publishing, p. 58 【7】

- Without loss of generality, we have k red points (x_1, y_1) , ..., (x_k, y_k) , and n - k blue points (x_{k+1}, y_{k+1}) , ..., (x_n, y_n)
- **■** Let y = $a x^2 + b x + c$ denote the parabola

Formulation is as follows:

In minimize $0 \leq \theta$ betermine whether we have a feasible subject to Red points: $x_i^2 a + x_i b + c \ge y_i$ (i = 1, 2, ..., k) Blue points: $x_i^2 a + x_i b + c \leq y_i$ (i = k+1, k+2, ..., n) $a > 0$, b, c: free variables solution (a, b, c) satisfying the constraints

Formulation (2)

From Naoki Katoh, Mathematical programming, Corona publishing, p. 58 【7】

×

×

×

×

×

- Without loss of generality, we have k red points (x_1, y_1) , ..., (x_k, y_k) , and $n - k$ blue points $(x_{k+1}, y_{k+1}), ..., (x_n, y_n)$ \times
- Let (x, y) and r denote the center and the radius of the circle, respectively
- Constraints for each point: Red points: $(x_i - x)^2 + (y_i - y)^2 \leq r^2$ (i = 1, 2, ..., k) Blue points: $(x_i - x)^2 + (y_i - y)^2 \ge r^2$ (i = k+1, k+2, ..., n)
- **■** As we have x^2 , y^2 , r^2 in the constraints, we cannot formulate the problem as a linear programming problem ... (is that right ?)

Formulation (2)

From Naoki Katoh, Mathematical programming, Corona publishing, p. 58 【7】

- **■** Let point $C(x, y)$ be the center of the circle
- We try to denote the constraints in another way
- [◼] Any pair of **red point Pⁱ (xi , yⁱ)** and **blue point P^j (x^j , y^j)** satisfies **distance C Pⁱ** ≦ **distance C P^j**

- That is, for any $i = 1, 2, ..., k$ and $j = k+1, k+2, ..., n$, we have a constraint $(x_i - x)^2 + (y_i - y)^2 \leq (x_i - x)^2 + (y_i - y)^2$
- From this inequality, we have a constraint 2 (x_i - x_j) x + 2 (y_i - y_j) y $\ge x_i^2 + y_i^2 - x_j^2 - y_j^2$

From Naoki Katoh, Mathematical programming, Corona publishing, p. 58 【7】

◼ Formulated linear programming problem is as follows:

※ By solving this linear programming problem, we can obtain the center (x, y) of the circle. The radius is not obtained.

Summary

- Simplex method
	- ◼ How to find an initial feasible basic solution ?
	- How to select a pivot?
- Situations we need to consider
	- \rightarrow Two-phase simplex method
- Formulation of linear programming problems