i

Large-Scale

Knowledge Processing #13
Using Binary Decision Diagrams
(Part 1)

e T R e i = | { ;
eyt o 17 b e e i e — L Y y
o ey Y R g 1 - e - et P - - -
SRR, | hZHERE (e R R T T e TN L T
el N AL e ..'\-||-| et p - T e i L = T] T =
- e af A e L e - o o ag - T -
L ¥ et e = il e o) ER L PRt L b O . r - B e

Faculty of Information Science
and Technology, Hokkaido Univ.

Takashi Horiyama

orev. class: Binary Decision Diagram (BDD)

m Representation of Boolean functions
by a directed acyclic graph

m Variable order
Variables appear according to a total order

m Two rules for simplifying BDDs @\
Remove redundant nodes
Share equivalent nodes @
Reduce BDDs until we have i

no redundant and equivalent nodes ! @K

0 1

‘ c.f. Lecture slides on “Representation of Boolean functions”

orev. class: Binary Decision Diagram (BDD)

Representation of Boolean functions
by a directed acyclic graph

The representation is unique
if variable order is defined

Many practical Boolean functions

are compactly represented
(We can efficiently compress logical structures)

Efficient operations for BDDs
[Bryant 1986]

Applications in various fields

‘ c.f. Lecture slides on

LOgiCG' OPZF‘C(TiOnS (Boolean operations)

m Logical AND of f=XfgpV xfy
and g=Xgg V x9g;

s FAGg=X(fg A gg)V x(f1 A g1)

We can obtain these ANDs recursively

9

fo X T g0 X 91

LOgiCG' OPZF‘C(TiOnS (Boolean operations)
S —7
AND, OR, XOR, ...

m Binary operation of f=Xfy V xf;
and g=Xgg V x9g;

m feg=x(fg®gg)V x(fiegq)

We can obtain these recursively

f 9

fo X T g0 X 91

practice: Apply |09iCCl| oper'aTionS
m Logical AND of the following two BDDs
Ns Ng | N5 A N |
2 '@N\ N@\N‘ N
@\ @) ey e (RN (AN
A) \ 4 4

N, A N, [1/\N5]

This subgraph

becomes N;

(Operation with
a constant)

This subgraph becomes| 0
(Operation with a constant) We share
the isomorphic subgraphs

6

S:horf break

m Take a deep breath, and relax yourself

S:hared BDDs

m By using the same variable order for representing BDDs,
we can share equivalent nodes of two (or more) BDDs

— Uniqueness of Boolean functions in a BDD management system
(No two BDDs represent the same Boolean function)

Management system:
Ensure uniqueness

m Equivalent nodes should be shared
(No equivalent nodes in a BDD management system)

Share equivalent nodes

s Ina BDD management system, node v is represented
as a triple of (variable name, the node pointed by the
0-edge of v, the node pointed by the 1-edge of v)

9

Management system:
Ensure uniqueness

Node table

n]?ge var. 0O-edge 1-edge

No[- [- | -

s Ina BDD management system, node v is represented
as a triple of (variable name, the node pointed by the
0-edge of v, the node pointed by the 1-edge of v) 1

Management system:
Ensure uniqueness

Given a triple
as a request for creating a node

Check: If the triple is already
registered in the node table,
return its node ID

Otherwise, create a new node

Node table is implemented

by a hash table
(triples are used as hash keys)

Above check is done in O(1) time

Hash table is the key
for managing BDDs efficiently

Node table

n]?ge var. 0O-edge 1-edge

No[- [- | -

In a BDD management system, node v is represented
as a triple of (variable name, the node pointed by the
0-edge of v, the node pointed by the 1-edge of v) 11

Management system:
Ensure uniqueness

m Givena triple Nodde table
as a request for creating anode Tp~ var. O-edge l-edge
Check: If the triple is already No | - - -
registered in the node table, Ni| - - -
return its node ID Ny| x3 | No | Ny
Otherwise, create a new node Ng| x3 | N1 | Ng
| IAVA Q\,{ NO N2
Gn case the 0-edge and the 1-edge point to Nz | N
the same node (i.e., same Boolean function), N2 | Ns
return its node ID N3 | N>
. Ny | Ns
Due to the uniqueness Ne | N-
Delete a of Boolean functions,
redundant node ¥ Bp the isomorphism of
the subgraphs can be epresented
checked simply by nted by the

\ comparing their node ID/sége of v) 1

Node request:
GetNode(x, N¢g, N¢q)

If NfO: Nfll return NfO

If triple (x, N¢y, N¢;) is already registered
in the node table, return its node ID

Otherwise, register (x, Ny, N¢;) in the node table,
and return its node ID

13

S:horf break

m Take a deep breath, and relax yourself

14

practice: Apply |09iCCll OPZPGTiOHS

m Logical AND of the following two BDDs

[Ns A Ny

e \

m At first, we create
node N; pointed by the O-edge
and
node N j pointed by the 1-edge

= Then, GetNode(xy, N, N;)

Recursion to the children pointed
by the 0-edges and 1-edges

15

practice: Apply |09iCCll oper'aTionS

m Logical AND of the following two BDDs

[Ns A Ny

x \

[N4/\N6 [N5 /\N7]

(N2 A N;)

Return Ng Return N,

We share
the isomorphic subgraphs

/GeTNode() for N, A N3 is called after creating the subgraphs A
pointed by the O-edge and the 1-edge of N, A N3

— The isomorphic subgraphs are created twice, then they are shared ...

\ (This approach is time consuming....) /6

Management system:
Do not apply the same operation twice (or more)

m Register the results of logical operations
in the operation result table
(hash table) ,

Hash key: - \
triple (op, N¢, N%), where [N’%/\NG] [f\ff;/\@
op is operation I
p(r'epr'Esen’ring AND, OR, ..), - >‘-'\
N is node ID of node f,

Ng is hode ID of node g

[Ns A Ny

(0ANz| (N2AN;s) [1AN,]

We share
Operation result table the isomorphic subgraphs

returns the node ID of
the root node of the resulting BDD
17

| p. 4 is the case when the root nodes of f and g have the same variable

In case the root nodes of f and ghave different vars.

By definition, f A g :Y(fo A 90) V x (fl A 91)

In case g does not depend on x ?

f(_) fl g

18

| p. 4 is the case when the root nodes of f and g have the same variable

In case the root nodes of f and ghave different vars.

By definition, f A g :Y(fo A 90) V x (fl A 91)

In case g does not depend on x ?

fAg=x(fg Ag)V x(fi Ag)

f(_) fl g fQ/\g fl/\g

Apply operation N¢: (x¢, Neo. Neg)
Apply(op, N¢, N,) Ng: (4. Ngo., Ng1)

If at least one of N; and N, is a constant node, or if Nt = N, holds,
return the node ID of the resul’rmg BDD (according to op)
(eg9..0 ANg=0,1A Ng=Ng, Ne A Ng = Ny)
If (op, N¢, N,) is registered in the operation result table,
return the node ID of the result
If variables x; and x, are the same
3-1. Nyo := Apply(op, N¢o, Ngo), Ny = Apply(op, Ney, Ng;)
3-2. If N,y = N, holds, return N,
Otherwise, return the resulting node ID of GetNode(x;, N,o, N,;)
If variable x; appears in higher level than x,
4-1. Nyo = Apply(op, Ngo, Ng), Ny 1= Apply(op, Ng, Ny)
4-2. Same as 3-2
If variable x; appears in lower level than x
Same as 4 (exchange the roles of N; and N,)

20

Time complexity of Apply operation

Worst-case time complexity: O(|f]| Ig|)

This is because the size of the resulting BDD of the
operation can be O(|f]| |g|)

For a long time, the time complexity is believed to be
less than O(|f| |g|) in case the size of the resulting
BDD is small

Unfortunately, however, it is proved that
“even if the sizes of the input and result BDDs are

small, there exists an instance that requires
O(|f| |gl) time" [Yoshinaka et al. 2012]

Empirically, in many cases, we can apply operations
within the time proportional to |f| + |g|

=\ By utilizing hash tables | 21

Extra: Reference counter

Reference count of node v:

The number of reference from other nodes (i.e., in-degree
of v; how many times node v is pointed from other nodes)

In many BDD management systems,
reference counter is used in the node table

How to use reference counter?

Repetition of GetNode() (i.e., creating nodes) floods
the node table

Garbage collection: Recycle nodes of reference count O
Things to consider

Recycled nodes still exist in the operation result table
— We need to clear the operation result table (whole table)

Suppose that we recycle a node in each time when the
reference count becomes O (which means clearing the op. table)
— The efficiency of the operation result table is spoiled

Garbage collection is done when the node table is almost full

practice: Create BDDS

m Represent the following Boolean functions by BDDs
AND: X X5 X3 X4
OR: X1V X,V X3V x4
Combination of AND and OR: (x; V Xx5) X3
Exclusive-OR (XOR): x{® X, ® X3@® X4

m Three ways for creating BDDs
Create a truth table — decision tree — BDD

Create a BDD from top by considering the subfunctions
(p. 6)
Create a BDD by Apply operations (see the following page)

23

Ct;ecn‘é a BDD by Apply operaTions

] (Xl V X2)X3

N

In BDD management systems,
BDDs are processed as a form of
shared BDDs

K ’ (x1 \ xz) ’

saw %] @ﬁ

0

(xq V xz)x3

24

Summary

m Binary Decision Diagram (BDD)
m Apply operations on two BDDs
Recursion

Techniques for efficient manipulation
m Shared BDDs: Uniqueness of Boolean functions

= Two hash tables for efficient operations
Node table:

= Ensure the uniqueness
i.e., do not create equivalent nodes twice (or more)

Operation result table:
= Do not apply the same operation twice (or more) o5

	スライド 1
	スライド 2: Prev. class： Binary Decision Diagram (BDD)
	スライド 3: Prev. class： Binary Decision Diagram (BDD)
	スライド 4: Logical operations (Boolean operations)
	スライド 5: Logical operations (Boolean operations)
	スライド 6: practice： Apply logical operations
	スライド 7: Short break
	スライド 8: Shared BDDs
	スライド 9: Management system: Ensure uniqueness
	スライド 10: Management system: Ensure uniqueness
	スライド 11: Management system: Ensure uniqueness
	スライド 12: Management system: Ensure uniqueness
	スライド 13: Node request : GetNode(x, Nf0, Nf1)
	スライド 14: Short break
	スライド 15: practice： Apply logical operations
	スライド 16: practice： Apply logical operations
	スライド 17: Management system: Do not apply the same operation twice (or more)
	スライド 18: In case the root nodes of f and ghave different vars.
	スライド 19: In case the root nodes of f and ghave different vars.
	スライド 20: Apply operation Apply(op, Nf, Ng)
	スライド 21: Time complexity of Apply operation
	スライド 22: Extra： Reference counter
	スライド 23: practice： Create BDDs
	スライド 24: Create a BDD by Apply operations
	スライド 25: Summary
	スライド 26

