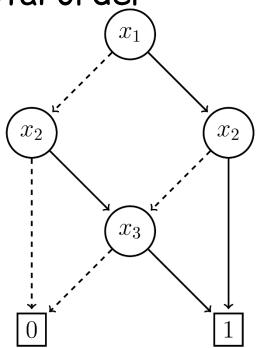
Large-Scale Knowledge Processing #13 Using Binary Decision Diagrams (Part 1)

Faculty of Information Science and Technology, Hokkaido Univ. Takashi Horiyama

Prev. class: Binary Decision Diagram (BDD)

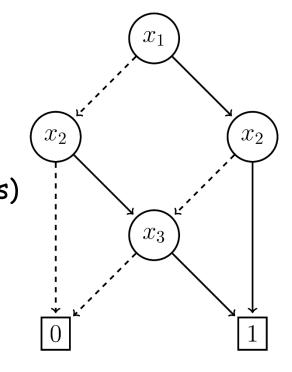
- Representation of Boolean functions by a directed acyclic graph
- Variable order
 - Variables appear according to a total order Two rules for simplifying BDDs x_1
 - Remove redundant nodes
 - Share equivalent nodes
 - Reduce BDDs until we have no redundant and equivalent nodes



Prev. class: Binary Decision Diagram (BDD)

Representation of Boolean functions by a directed acyclic graph

The representation is unique if variable order is defined Many practical Boolean functions are compactly represented (We can efficiently compress logical structures) Efficient operations for BDDs [Bryant 1986] Applications in various fields



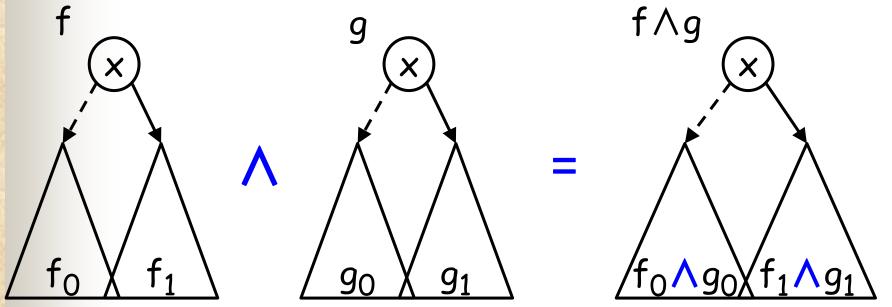
c.f. Lecture slides on "Representation of Boolean functions"

Logical operations (Boolean operations)

• Logical AND of $f = \overline{x} f_0 \vee x f_1$ and $g = \overline{x} g_0 \vee x g_1$

$$f \wedge g = \overline{x} (f_0 \wedge g_0) \vee x (f_1 \wedge g_1)$$

We can obtain these ANDs recursively

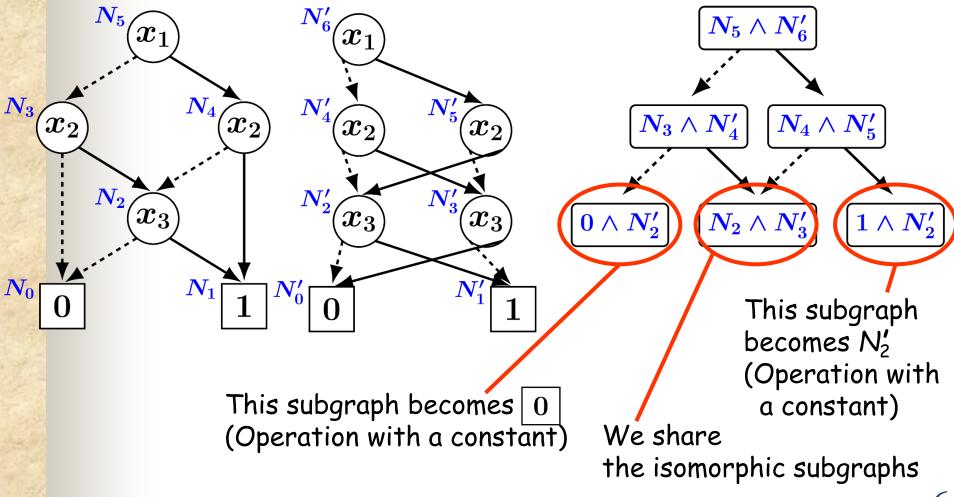


Logical operations (Boolean operations)
AND, OR, XOR, ...
Binary operation of
$$f = \overline{x} f_0 \lor x f_1$$

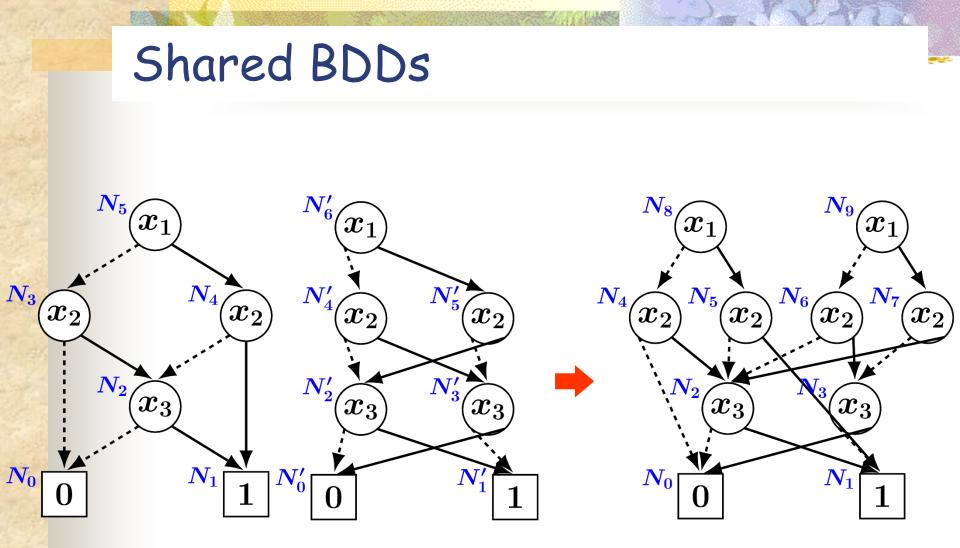
and $g = \overline{x} g_0 \lor x g_1$
 $f \bullet g = \overline{x} (f_0 \bullet g_0) \lor x (f_1 \bullet g_1)$
We can obtain these recursively
 $f \swarrow f_0 \land f_1$ $\bullet g_0 \land g_1$ $= f \bullet g \land f_0 \bullet g_0 \land f_1 \bullet g_1$

practice: Apply logical operations

Logical AND of the following two BDDs



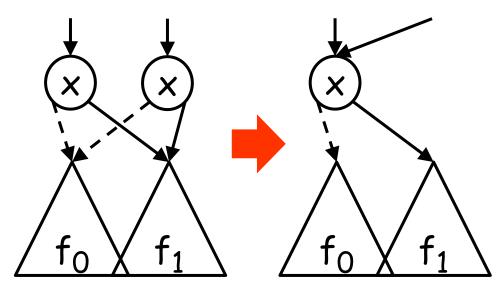
Take a deep breath, and relax yourself



- By using the same variable order for representing BDDs, we can share equivalent nodes of two (or more) BDDs
- → Uniqueness of Boolean functions in a BDD management system (No two BDDs represent the same Boolean function)

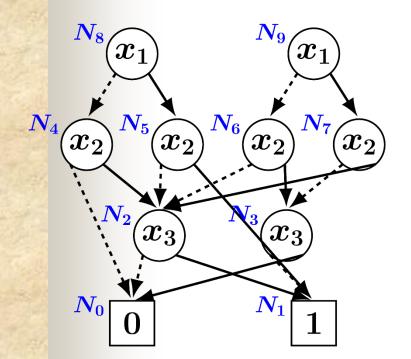
 Equivalent nodes should be shared (No equivalent nodes in a BDD management system)

Share equivalent nodes



In a BDD management system, node v is represented as a triple of (variable name, the node pointed by the O-edge of v, the node pointed by the 1-edge of v)

Management system: Ensure uniqueness



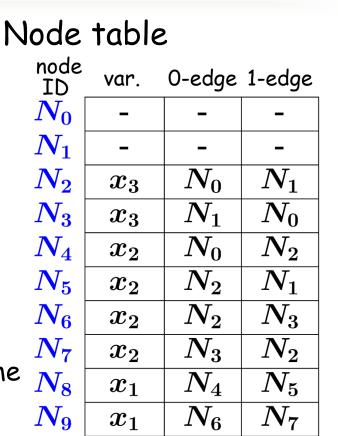
Node table			
node ID	var.	0-edge 1-edge	
N_0	-	-	-
N_1	-	-	-
N_2	x_3	N_0	N_1
N_3	x_3	N_1	N_0
N_4	x_2	N_0	N_2
N_5	x_2	N_2	N_1
N_6	x_2	N_2	N_3
N_7	x_2	N_3	N_2
N_8	x_1	N_4	N_5
N_9	x_1	N_6	N_7

In a BDD management system, node v is represented as a triple of (variable name, the node pointed by the O-edge of v, the node pointed by the 1-edge of v) 10

Management system: Ensure uniqueness

- Given a triple as a request for creating a node
 - Check: If the triple is already registered in the node table, return its node ID
 - Otherwise, create a new node
- Node table is implemented by a hash table (triples are used as hash keys)
 - Above check is done in O(1) time

Hash table is the key for managing BDDs efficiently



In a BDD management system, node v is represented as a triple of (variable name, the node pointed by the O-edge of v, the node pointed by the 1-edge of v)

Management system: Ensure uniqueness

- Given a triple as a request for creating a node
 - Check: If the triple is already registered in the node table, return its node ID
 - Otherwise, create a new node

In case the 0-edge and the 1-edge point to the same node (i.e., same Boolean function), return its node ID

Delete a redundant node

Due to the uniqueness of Boolean functions, the isomorphism of the subgraphs can be checked simply by comparing their node IDs dge of v)

node ID

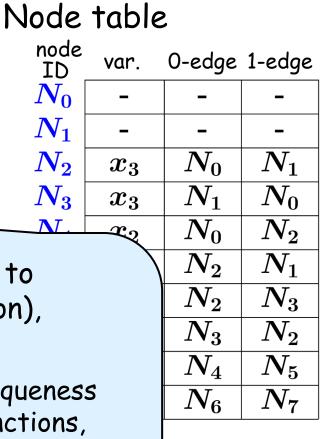
 N_0

 N_1

 N_2

 N_3

 ΛT



epresented nted by the 12

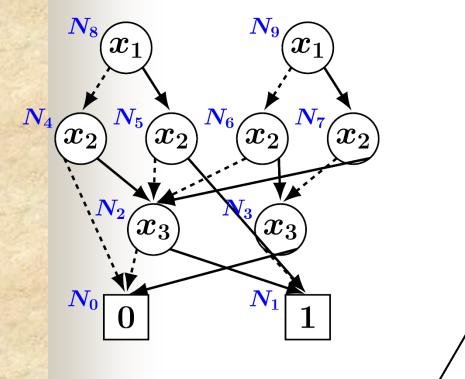
Node request: GetNode(x, N_{f0}, N_{f1})

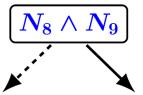
- 1. If $N_{f0} = N_{f1}$, return N_{f0}
- 2. If triple (x, N_{f0}, N_{f1}) is already registered in the node table, return its node ID
- 3. Otherwise, register (x, N_{f0}, N_{f1}) in the node table, and return its node ID

Take a deep breath, and relax yourself

practice: Apply logical operations

Logical AND of the following two BDDs





At first, we create
 node N_i pointed by the 0-edge and

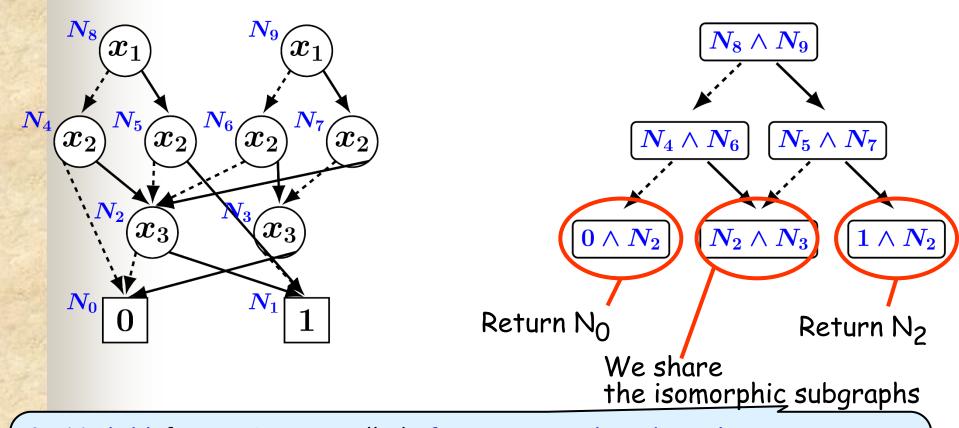
node N_j pointed by the 1-edge

Then, $GetNode(x_1, N_i, N_j)$

Recursion to the children pointed by the 0-edges and 1-edges

practice: Apply logical operations

Logical AND of the following two BDDs



GetNode() for N₂ ∧ N₃ is called after creating the subgraphs pointed by the 0-edge and the 1-edge of N₂ ∧ N₃ → The isomorphic subgraphs are created twice, then they are shared ... (This approach is time consuming....)

6

Management system: Do not apply the same operation twice (or more)

- Register the results of logical operations in the operation result table (hash table) $N_8 \wedge N_9$
 - Hash key: triple (op, N_f, N_g), where op is operation ID

(representing AND, OR, ...), N_f is node ID of node f, N_q is node ID of node g

We share the isomorphic subgraphs

 $N_2 \wedge N_3$

 $N_4 \wedge N_6$

 $0 \wedge N_2$

 $N_5 \wedge N_7$

 $1 \wedge N_2$

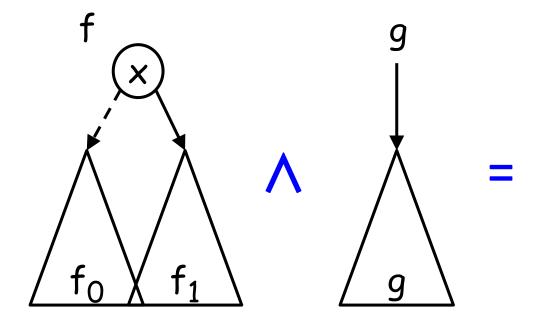
Operation result table the isomorph returns the node ID of the root node of the resulting BDD

p. 4 is the case when the root nodes of f and g have the same variable

In case the root nodes of f and ghave different vars.

By definition, $f \wedge g = \overline{x}(f_0 \wedge g_0) \vee x(f_1 \wedge g_1)$

In case g does not depend on x?

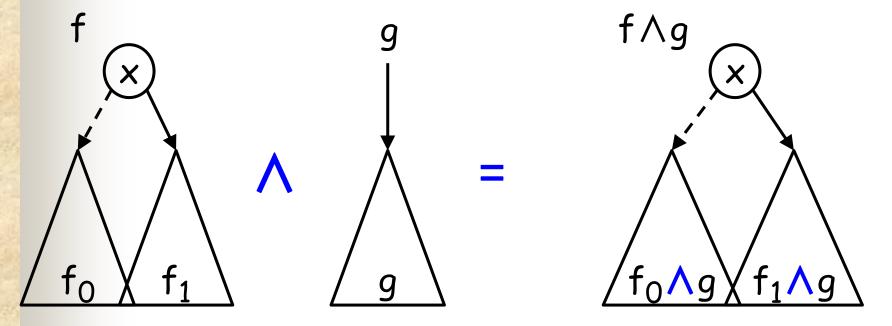


p. 4 is the case when the root nodes of f and g have the same variable

In case the root nodes of f and ghave different vars.

By definition, $f \land g = \overline{x}(f_0 \land g_0) \lor x(f_1 \land g_1)$ In case g does not depend on x?

 $f \wedge g = \overline{x}(f_0 \wedge g) \vee x(f_1 \wedge g)$



Apply operation Apply(op, N_f, N_g)

 N_{f} : (x_f, N_{f0}, N_{f1}) N_{g} : (x_g, N_{g0}, N_{g1})

- If at least one of N_f and N_g is a constant node, or if $N_f = N_g$ holds, return the node ID of the resulting BDD (according to op) (e.g., $0 \land N_f = 0, 1 \land N_f = N_f, N_f \land N_f = N_f$)
- If (op, N_f, N_g) is registered in the operation result table, return the node ID of the result
- If variables x_f and x_g are the same
 3-1. N_{h0} := Apply(op, N_{f0}, N_{g0}), N_{h1} := Apply(op, N_{f1}, N_{g1})
 3-2. If N_{h0} = N_{h1} holds, return N_{h0}

Otherwise, return the resulting node ID of GetNode(x_f , N_{h0} , N_{h1}) If variable x_f appears in higher level than x_q

- 4-1. $N_{h0} := Apply(op, N_{f0}, N_g), N_{h1} := Apply(op, N_{f1}, N_g)$
- 4-2. Same as 3-2

1.

4.

5.

If variable x_f appears in lower level than x_g
 Same as 4 (exchange the roles of N_f and N_g)

Time complexity of Apply operation

- Worst-case time complexity: O(|f| |g|)
 - This is because the size of the resulting BDD of the operation can be O(|f| |g|)
- For a long time, the time complexity is believed to be less than O(|f| |g|) in case the size of the resulting BDD is small
- Unfortunately, however, it is proved that "even if the sizes of the input and result BDDs are small, there exists an instance that requires O(|f| |g|) time" [Yoshinaka et al. 2012]
- Empirically, in many cases, we can apply operations within the time proportional to |f| + |g|

By utilizing hash tables

Extra: Reference counter

- Reference count of node v:
 - The number of reference from other nodes (i.e., in-degree of v; how many times node v is pointed from other nodes)
- In many BDD management systems, reference counter is used in the node table
- How to use reference counter?
 - Repetition of GetNode() (i.e., creating nodes) floods the node table
 - Garbage collection: Recycle nodes of reference count 0
- Things to consider
 - Recycled nodes still exist in the operation result table
 → We need to clear the operation result table (whole table)
 - Suppose that we recycle a node in each time when the reference count becomes 0 (which means clearing the op. table)
 → The efficiency of the operation result table is spoiled
 - Garbage collection is done when the node table is almost full

practice: Create BDDS

- Represent the following Boolean functions by BDDs
 - 1. AND: $x_1 x_2 x_3 x_4$
 - 2. OR: $x_1 \vee x_2 \vee x_3 \vee x_4$
 - 3. Combination of AND and OR: $(x_1 \lor x_2) x_3$
 - 4. Exclusive-OR (XOR): $x_1 \oplus x_2 \oplus x_3 \oplus x_4$
- Three ways for creating BDDs

- Create a truth table \rightarrow decision tree \rightarrow BDD
- Create a BDD from top by considering the subfunctions
- Create a BDD by Apply operations (see the following page)

(p. 6)

Create a BDD by Apply operations

 x_2

1

 x_3

Xz

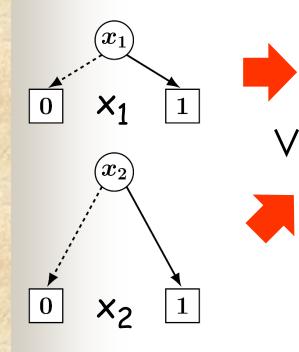
 x_1

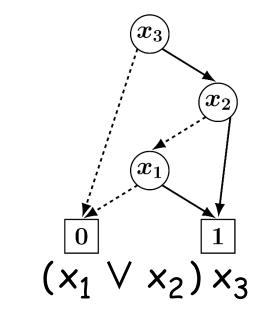
 $(x_1 \vee x_2)$

0

0

 $(x_1 \vee x_2) x_3$





In BDD management systems, BDDs are processed as a form of shared BDDs

Summary

- Binary Decision Diagram (BDD)
- Apply operations on two BDDs
 - Recursion

Techniques for efficient manipulation

- Shared BDDs: Uniqueness of Boolean functions
- Two hash tables for efficient operations
 - Node table:
 - Ensure the uniqueness
 - i.e., do not create equivalent nodes twice (or more)
 - Operation result table:
 - Do not apply the same operation twice (or more)