Large-Scale Knowledge Processing #14 Using Binary Decision Diagrams (Part 2)

Faculty of Information Science and Technology, Hokkaido Univ. Takashi Horiyama

1

Application of BDDs: Design and verification of logic circuits

Verification: Equivalence of combinatorial circuits

- Description of the specification (What are outputted from the inputs) and designed circuit (In many case, it is optimized by a design compiler)
- Reference circuit and designed circuit

- Exhaustively check whether the outputs of the above two ("spec. and circuit" etc.) are the same for all inputs (If we use truth tables, we need to check all 2ⁿ cases ...)
- Represent both Boolean functions of the spec. and the designed circuit by BDDs
 - **Same Boolean functions** have the same root node (Uniqueness) 2

Application of BDDs: Design and verification of logic circuits

- Sequential circuits (circuits that have states, where the states changes according to the inputs)
- Check whether all sequences of the outputs are the same for all sequences of the inputs (This check is much more difficult than that for combinatorial circuits)
- States are stored in registers (memory elements)
- Exhaustively check state transitions on all inputs

Application of BDDs: Combinatorial problems and optimization

- Represent a combinatorial problem by Boolean variables
- More precisely, represent constraints (conditions to be satisfied) of a combinatorial problem by Boolean functions
- Construct a BDD representing the AND of the Boolean functions representing the constraints
 - We have all feasible solutions !
- If we have BDDs, it is easy to evaluate the linear sum of the costs
 - We can easily obtain the optimal solutions from BDDs !

Using BDDs (1)

- Determine whether a given combination is a feasible solution or not
 - Traverse a BDD from the root node
 - Ex.) { x_1, x_3 }? ... Yes since $(x_1, x_2, x_3) = (1, 0, 1)$ gives { x_2 }? ... No since $(x_1, x_2, x_3) = (0, 1, 0)$ gives 0
- Enumerate all solutions from a BDD
 - Depth first search
 - When we come to the 1-node, we have a feasible solution

Ex.)
$$\{x_2, x_3\}, \{x_1, x_3\}, \{x_1, x_2\}, \{x_1, x_2\}, \{x_1, x_2, x_3\}$$

Using BDDs (2)

Evaluation of the linear sum of the cost

- At each node, the costs for its 0-edge and 1-edge are compared, and the better edge is adopted
- The cost of the root node is the optimal value

Ex.) minimize $-4x_1 - 5x_2 + 2x_3$

Take a deep breath, and relax yourself

Combinatorial optimization: Knapsack problem

- We can buy snacks within 100 yen (i.e., the budget is 100 yen)
 - We can adopt (i.e., take) at most 1 piece for each item
 - We cannot divide an item

We'd like to maximize the sum of the utilities

The images of the snacks are from the web sites of Meiji Co. Ltd., and Morinaga & Co., Ltd. https://www.meiji.co.jp https://www.morinaga.co.jp

Item	Item ₁	Item ₂	Item ₃	Item ₄	Item ₅	Item ₆
Price (yen)	60 yen	30 yen	40 yen	50 yen	40 yen	30 yen
Utility	36	27	12	50	28	24

$$x_i = \begin{cases} 1 \cdots We \text{ take item}_i \\ 0 \cdots Do not take item \end{cases}$$

- We can buy snacks within 100 yen (i.e., the budget is 100 yen)
 - $60 x_1 + 30 x_2 + 40 x_3 + 50 x_4 + 40 x_5 + 30 x_6 \le 100$

Knapsack problem : Formulation

Item	Item ₁	Item ₂	Item3	Item ₄	Item ₅	Item ₆
Price (yen)	p ₁	Р ₂	Þ ₃	p ₄	р ₅	Р ₆
Utility	u ₁	u ₂	u ₃	u ₄	u ₅	u ₆

Objective function

• Maximize : $\sum_{i=1}^{6} u_i x_i$

Constraints

$$\sum_{i=1}^{o} p_i x_i \leq 100$$

0-1 integer programming problem

• $x_i \in \{0, 1\}$ (i = 1, 2, ..., 6)

 Maximize the objective function Σ_i u_i x_i (see p. 6)

Budget 100 yen	Item	Item5	Item ₄	Item3	Item ₂	Item ₁
	Price (yen)	60 yen	30 yen	30 yen	60 yen	30 yen
	Utility	36	27	12	50	28

Budget 100 yen	Item	Item ₅	Item ₄	Item3	Item ₂	Item ₁
	Price (yen)	60 yen	30 yen	30 yen	60 yen	30 yen
	Utility	36	27	12	50	28

Budget 100 yen	Item	Item ₅	Item ₄	Item3	Item ₂	Item ₁
	Price (yen)	60 yen	30 yen	30 yen	60 yen	30 yen
	Utility	36	27	12	50	28

- Once the BDD representing the constraints are obtained, it is easy to minimize/maximize the linear sum of the costs
- Note that, however, if our task is just an optimization, it is not recommended to construct BDDs (since it requires much computation time and huge memory consumption)
- Benefits of constructing BDDs
 - Optimization with changing the objective function (We can ovoid searching the solution space twice or more for different objective function)
 - We can combine the BDDs with other constraints (Apply operation is easy)

Summary

- Design and verification of logic circuits
- Combinatorial problems and optimization
 - Determine whether a given combination is a feasible solution or not
 - Evaluate the linear sum of the costs
 - Ex.) Knapsack problem