

Large-Scale Knowledge Processing

Using Binary Decision Diagrams (1)

Faculty of Information Science
and Technology, Hokkaido Univ.

Takashi Horiyama

Prev. class: Binary Decision Diagram (BDD)

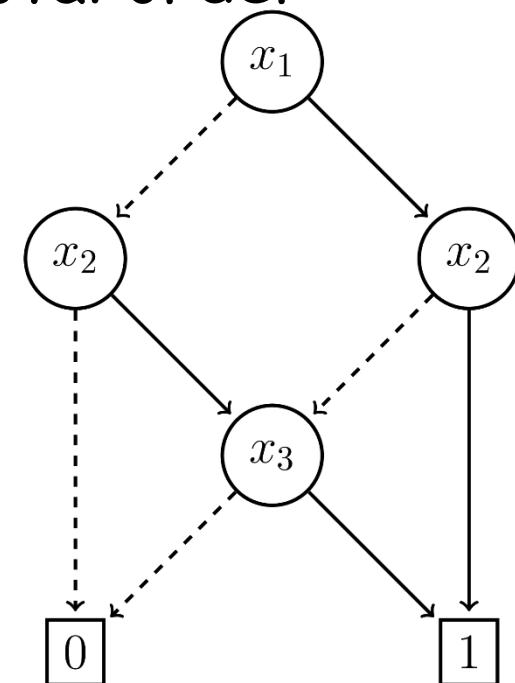
- Representation of Boolean functions by a **directed acyclic graph**

- **Variable order**

- Variables appear according to a total order

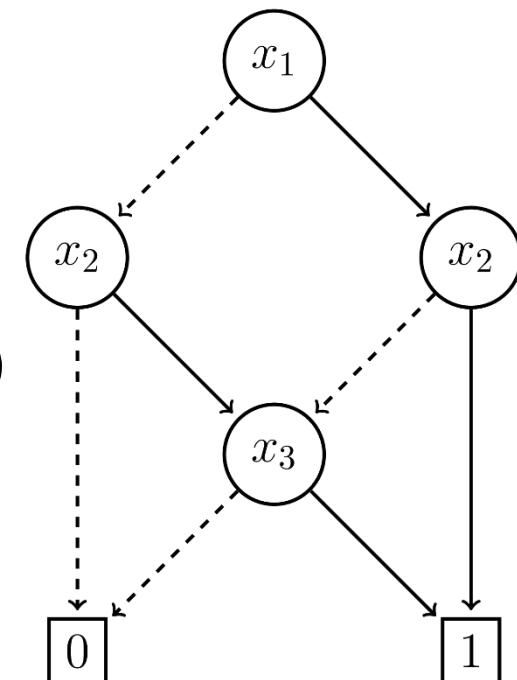
- Two rules for simplifying BDDs

- Remove **redundant nodes**
 - Share **equivalent nodes**
 - **Reduce** BDDs until we have no redundant and equivalent nodes



Prev. class: Binary Decision Diagram (BDD)

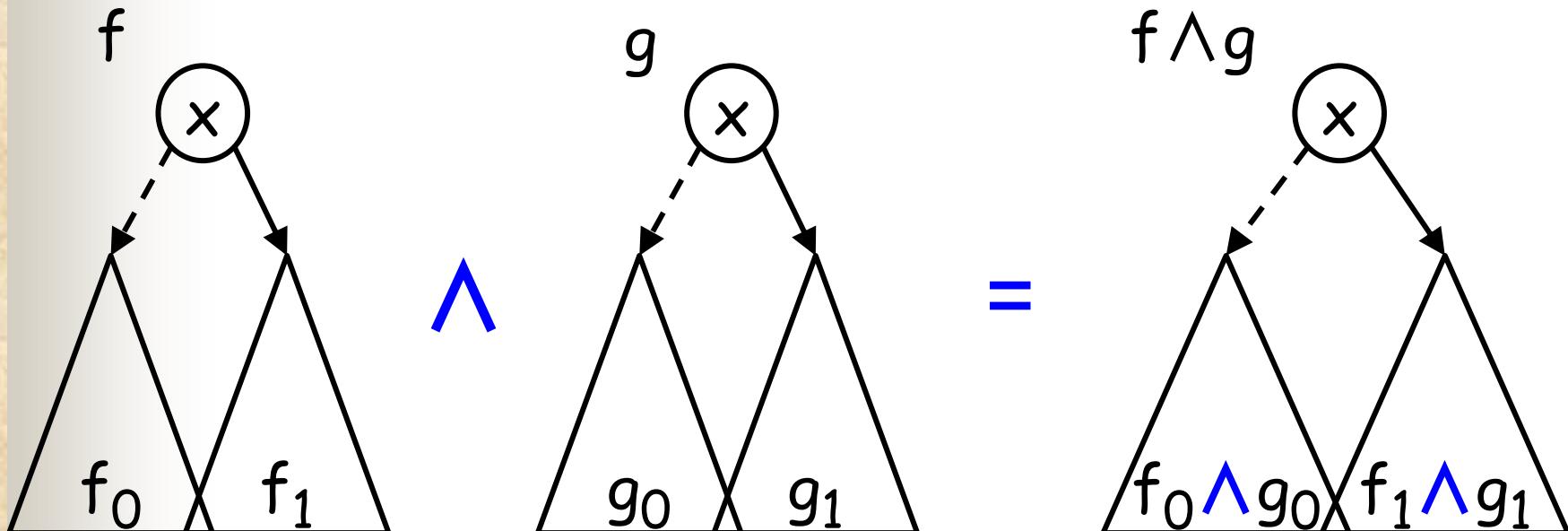
- Representation of Boolean functions by a **directed acyclic graph**
- The **representation is unique** if variable order is defined
- Many practical Boolean functions are **compactly** represented
(We can efficiently compress logical structures)
- **Efficient operations** for BDDs
[Bryant 1986]
- Applications in various fields



Logical operations (Boolean operations)

- Logical AND of $f = \overline{x} f_0 \vee x f_1$
and $g = \overline{x} g_0 \vee x g_1$
- $f \wedge g = \overline{x} (\underline{f_0 \wedge g_0}) \vee x (\underline{f_1 \wedge g_1})$

We can obtain these ANDs recursively

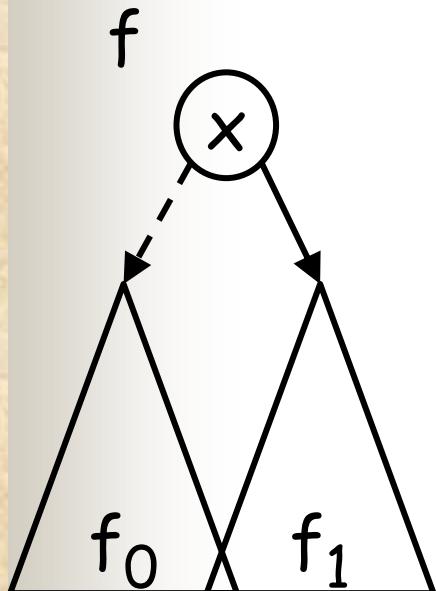
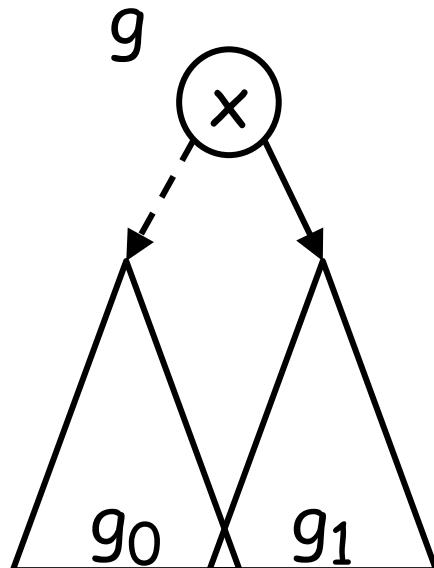
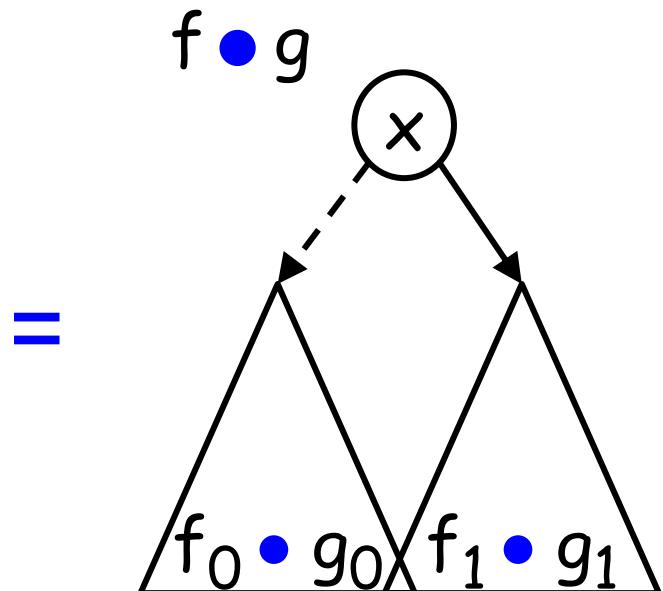


Logical operations (Boolean operations)

AND, OR, XOR, ...

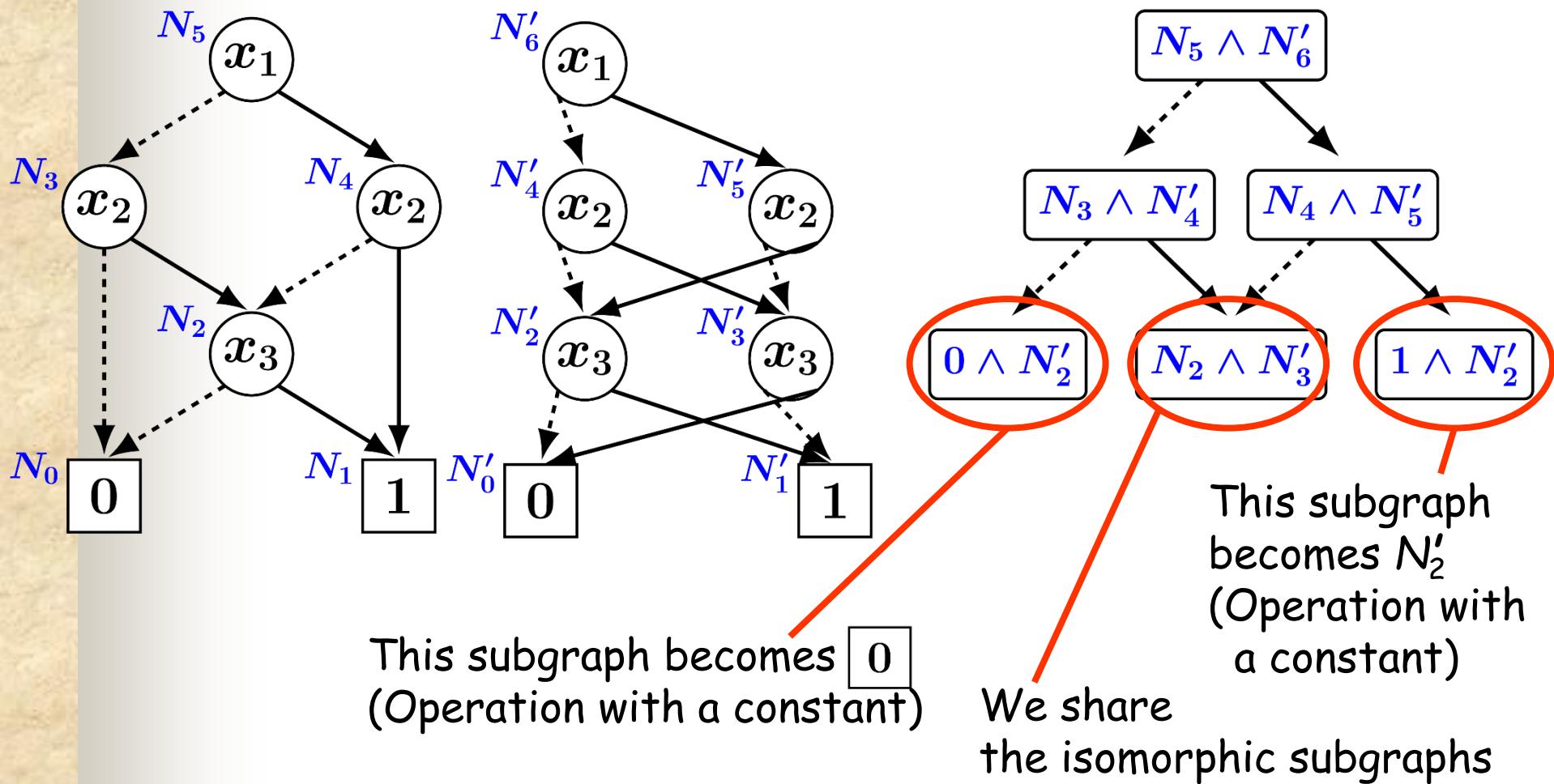
- Binary operation of $f = \overline{x} f_0 \vee x f_1$
and $g = \overline{x} g_0 \vee x g_1$
- $f \bullet g = \overline{x} (\underline{f_0 \bullet g_0}) \vee x (\underline{f_1 \bullet g_1})$

We can obtain these recursively



practice: Apply logical operations

- Logical AND of the following two BDDs



Short break

- Take a deep breath, and relax yourself

Shared BDDs

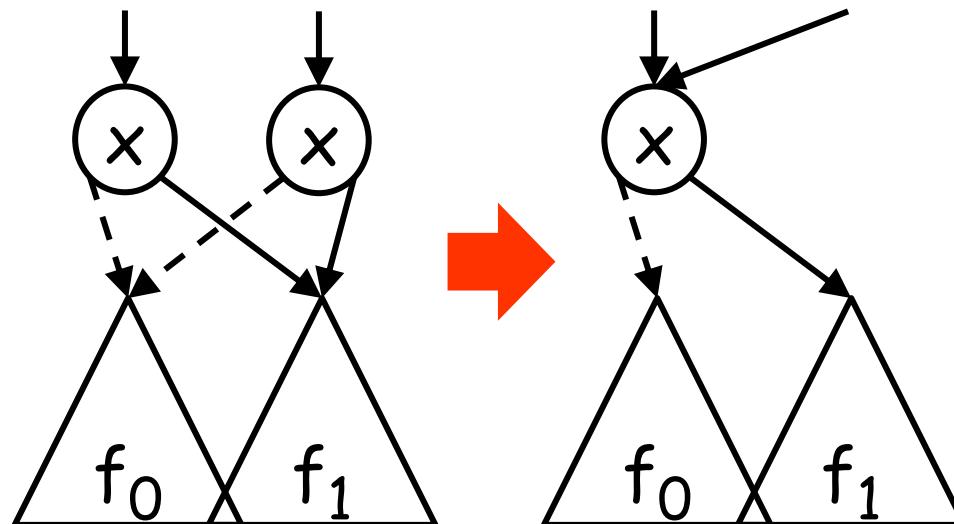


- By using the same variable order for representing BDDs, we can **share equivalent nodes** of two (or more) BDDs
→ **Uniqueness** of Boolean functions in a BDD management system
(No two BDDs represent the same Boolean function)

Management system: Ensure uniqueness

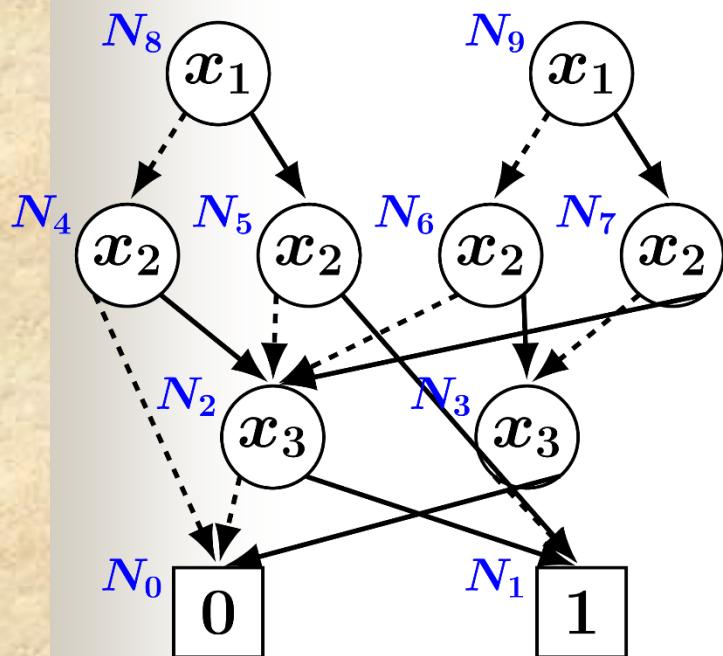
- **Equivalent nodes should be shared**
(No equivalent nodes in a BDD management system)

Share **equivalent nodes**



- In a BDD management system, **node v is represented as a triple** of (variable name, the node pointed by the 0-edge of v , the node pointed by the 1-edge of v)

Management system: Ensure uniqueness



Node table

node ID	var.	0-edge	1-edge
N_0	-	-	-
N_1	-	-	-
N_2	x_3	N_0	N_1
N_3	x_3	N_1	N_0
N_4	x_2	N_0	N_2
N_5	x_2	N_2	N_1
N_6	x_2	N_2	N_3
N_7	x_2	N_3	N_2
N_8	x_1	N_4	N_5
N_9	x_1	N_6	N_7

- In a BDD management system, node v is represented as a **tuple** of (variable name, the node pointed by the 0-edge of v , the node pointed by the 1-edge of v)

Management system: Ensure uniqueness

- Given a triple as a request for creating a node
 - Check: If the triple is already registered in the node table, return its node ID
 - Otherwise, create a new node
- Node table is implemented by a hash table (triples are used as hash keys)
 - Above check is done in $O(1)$ time
- In a BDD management system, **node v** is represented as a **triple** of (variable name, the node pointed by the 0-edge of v, the node pointed by the 1-edge of v)

Node table

node ID	var.	0-edge	1-edge
N_0	-	-	-
N_1	-	-	-
N_2	x_3	N_0	N_1
N_3	x_3	N_1	N_0
N_4	x_2	N_0	N_2
N_5	x_2	N_2	N_1
N_6	x_2	N_2	N_3
N_7	x_2	N_3	N_2
N_8	x_1	N_4	N_5
N_9	x_1	N_6	N_7

Hash table is the key for managing BDDs efficiently

Management system: Ensure uniqueness

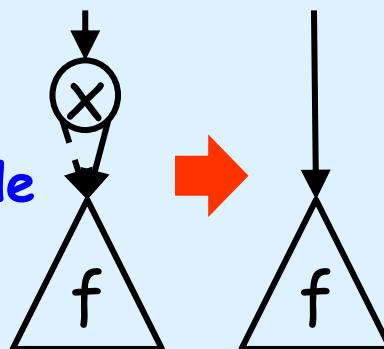
- Given a triple as a request for creating a node
 - Check: If the triple is already registered in the node table, return its node ID
 - Otherwise, create a new node

Node table

node ID	var.	0-edge	1-edge
N_0	-	-	-
N_1	-	-	-
N_2	x_3	N_0	N_1
N_3	x_3	N_1	N_0
N_4	x_2	N_0	N_2
N_5		N_2	N_1
N_6		N_2	N_3
N_7		N_3	N_2
N_8		N_4	N_5
N_9		N_6	N_7

In case the 0-edge and the 1-edge point to the same node (i.e., same Boolean function), return its node ID

Delete a redundant node



Due to the uniqueness of Boolean functions, the isomorphism of the subgraphs can be checked simply by comparing their node IDs

represented by the edge of v)

Node request: GetNode(x, N_{f0}, N_{f1})

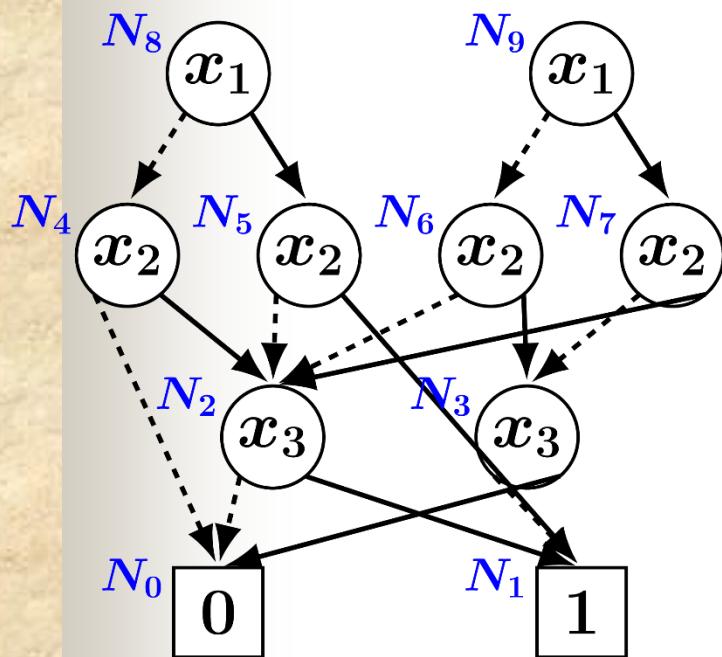
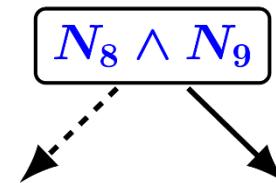
1. If $N_{f0} = N_{f1}$, return N_{f0}
2. If triple (x, N_{f0}, N_{f1}) is already registered in the node table, return its node ID
3. Otherwise, register (x, N_{f0}, N_{f1}) in the node table, and return its node ID

Short break

- Take a deep breath, and relax yourself

practice: Apply logical operations

- Logical AND of the following two BDDs

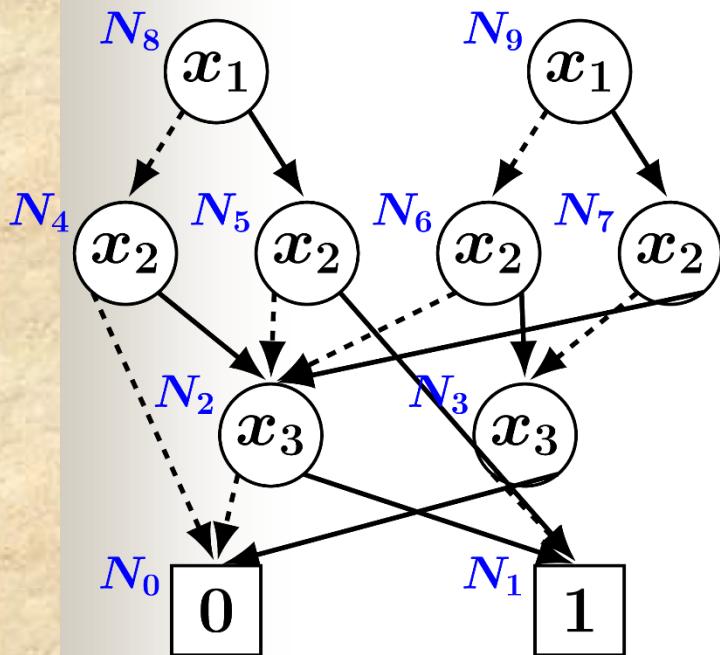
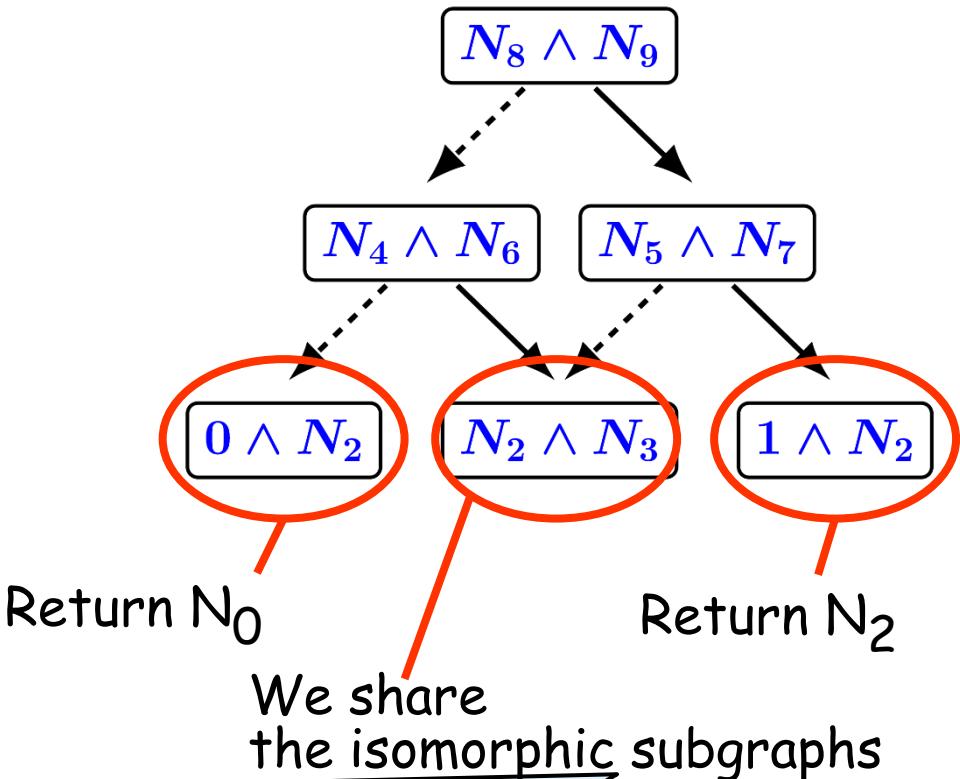


- At first, we create node N_i pointed by the 0-edge and node N_j pointed by the 1-edge
- Then, $\text{GetNode}(x_1, N_i, N_j)$

Recursion to the children pointed by the 0-edges and 1-edges

practice: Apply logical operations

- Logical AND of the following two BDDs



`GetNode()` for $N_2 \wedge N_3$ is called **after creating the subgraphs**

pointed by the 0-edge and the 1-edge of $N_2 \wedge N_3$

→ The **isomorphic subgraphs** are **created twice, then they are shared** ...

(This approach is time consuming....)

Management system: Do not apply the same operation twice (or more)

- Register the results of logical operations in the operation result table (hash table)

- Hash key:

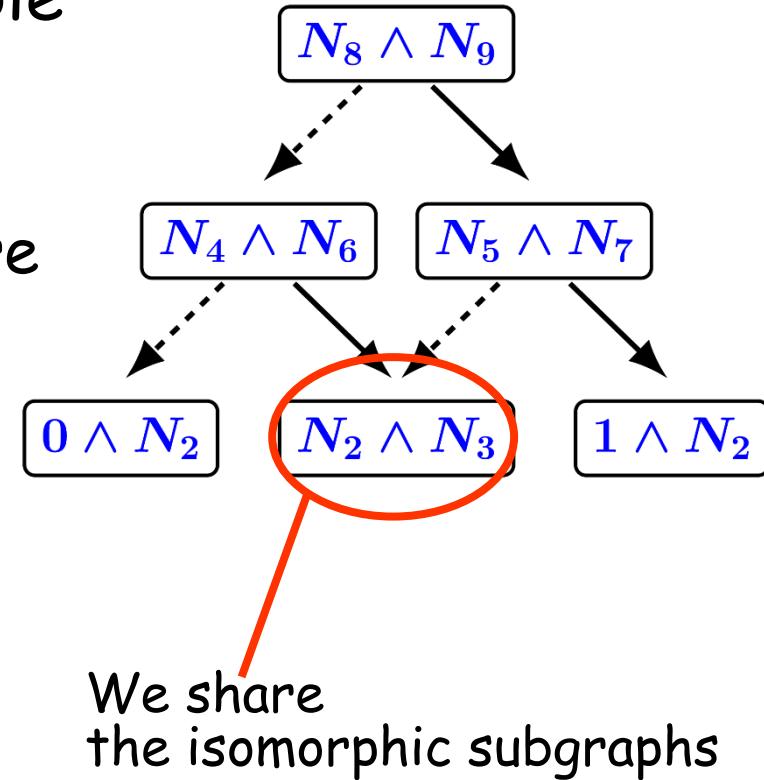
- triple (op, N_f, N_g) , where op is operation ID

- (representing AND, OR, ...),

- N_f is node ID of node f ,

- N_g is node ID of node g

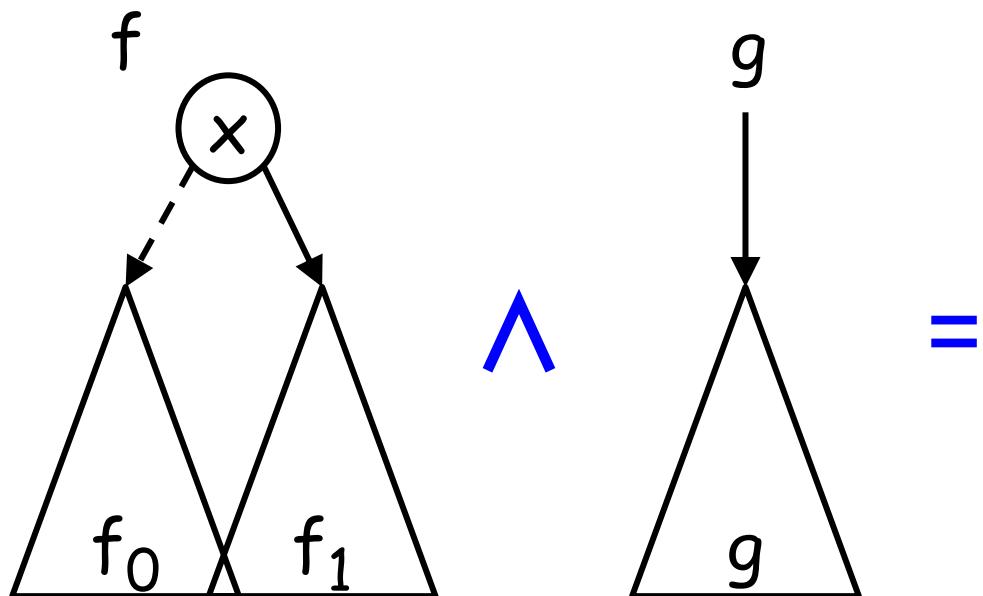
- Operation result table returns the node ID of the root node of the resulting BDD



In case the root nodes of f and g have different vars.

By definition, $f \wedge g = \overline{x}(f_0 \wedge g_0) \vee x(f_1 \wedge g_1)$

In case g does not depend on x ?

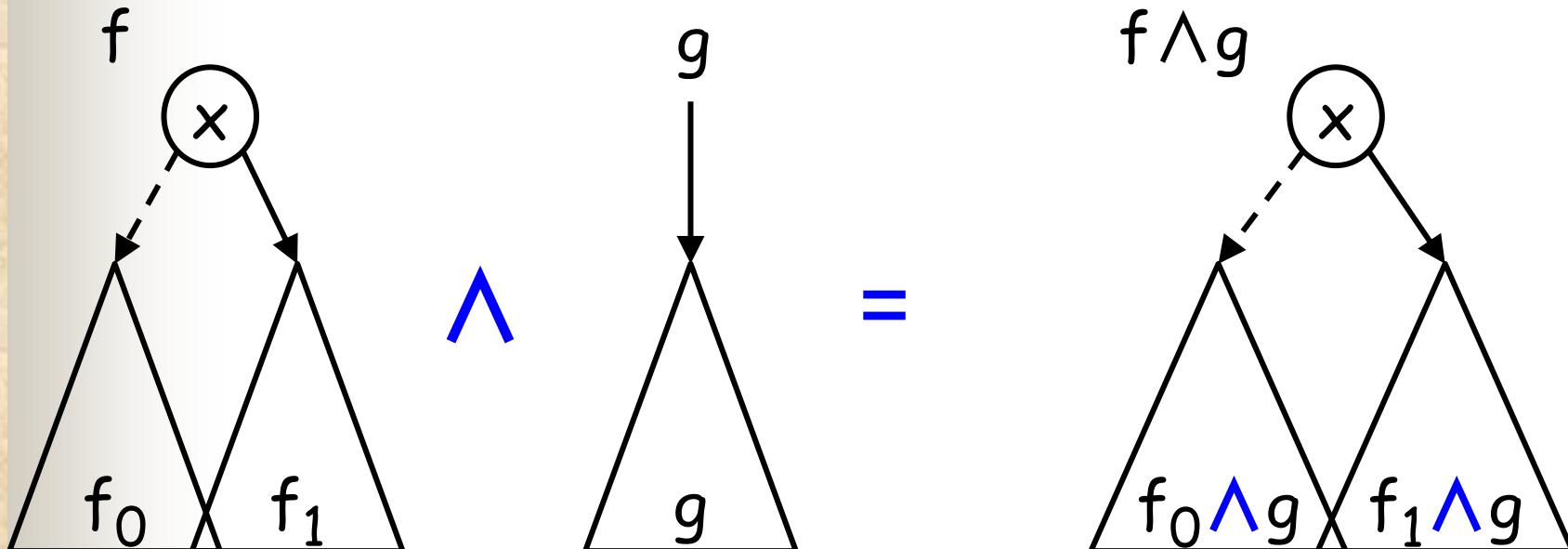


In case the root nodes of f and g have different vars.

By definition, $f \wedge g = \overline{x}(f_0 \wedge g_0) \vee x(f_1 \wedge g_1)$

In case g does not depend on x ?

$$f \wedge g = \overline{x}(f_0 \wedge g) \vee x(f_1 \wedge g)$$



Apply operation

Apply(op, N_f , N_g)

N_f : (x_f , N_{f0} , N_{f1})

N_g : (x_g , N_{g0} , N_{g1})

1. If at least one of N_f and N_g is a constant node, or if $N_f = N_g$ holds, return the node ID of the resulting BDD (according to op)
(e.g., $0 \wedge N_f = 0$, $1 \wedge N_f = N_f$, $N_f \wedge N_f = N_f$)
2. If (op, N_f, N_g) is registered in the operation result table, return the node ID of the result
3. If variables x_f and x_g are the same
 - 3-1. $N_{h0} := \text{Apply}(op, N_{f0}, N_{g0})$, $N_{h1} := \text{Apply}(op, N_{f1}, N_{g1})$
 - 3-2. If $N_{h0} = N_{h1}$ holds, return N_{h0}
Otherwise, return the resulting node ID of $\text{GetNode}(x_f, N_{h0}, N_{h1})$
4. If variable x_f appears in higher level than x_g
 - 4-1. $N_{h0} := \text{Apply}(op, N_{f0}, N_g)$, $N_{h1} := \text{Apply}(op, N_{f1}, N_g)$
 - 4-2. Same as 3-2
5. If variable x_f appears in lower level than x_g
 - Same as 4 (exchange the roles of N_f and N_g)

Time complexity of Apply operation

- Worst-case time complexity: $O(|f| |g|)$
 - This is because the size of the resulting BDD of the operation can be $O(|f| |g|)$
- For a long time, the time complexity is believed to be less than $O(|f| |g|)$ in case the size of the resulting BDD is small
- Unfortunately, however, it is proved that "even if the sizes of the input and result BDDs are small, there exists an instance that requires $O(|f| |g|)$ time"
[Yoshinaka et al. 2012]
- Empirically, in many cases, we can apply operations within the time proportional to $|f| + |g|$

By utilizing hash tables

Extra: Reference counter

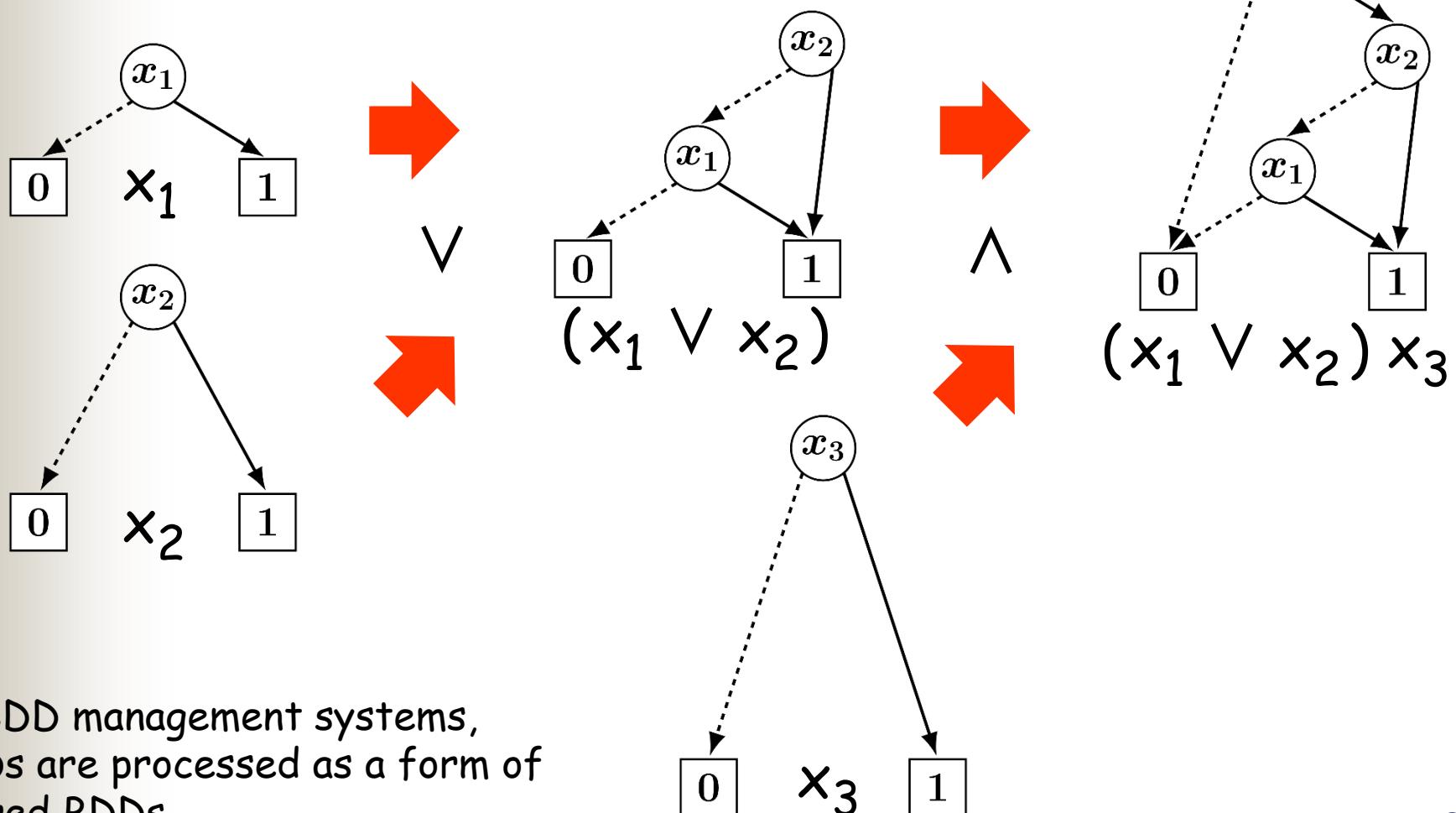
- Reference count of node v :
 - The number of reference from other nodes (i.e., in-degree of v ; how many times node v is pointed from other nodes)
- In many BDD management systems, reference counter is used in the node table
- How to use reference counter?
 - Repetition of `GetNode()` (i.e., creating nodes) floods the node table
 - Garbage collection: Recycle nodes of reference count 0
- Things to consider
 - Recycled nodes still exist in the operation result table
 - We need to clear the operation result table (whole table)
 - Suppose that we recycle a node in each time when the reference count becomes 0 (which means clearing the op. table)
 - The efficiency of the operation result table is spoiled
 - Garbage collection is done when the node table is almost full

practice: Create BDDs

- Represent the following Boolean functions by BDDs
 1. AND: $x_1 \times_2 \times_3 \times_4$
 2. OR: $x_1 \vee x_2 \vee x_3 \vee x_4$
 3. Combination of AND and OR: $(x_1 \vee x_2) \times_3$
 4. Exclusive-OR (XOR): $x_1 \oplus x_2 \oplus x_3 \oplus x_4$
- Three ways for creating BDDs
 - Create a truth table → decision tree → BDD
 - Create a BDD from top by considering the subfunctions
(p. 6)
 - Create a BDD by Apply operations (see the following page)

Create a BDD by Apply operations

- $(x_1 \vee x_2) x_3$



In BDD management systems,
BDDs are processed as a form of
shared BDDs

Summary

- Binary Decision Diagram (BDD)
- Apply operations on two BDDs
 - Recursion

Techniques for efficient manipulation

- Shared BDDs: Uniqueness of Boolean functions
- Two hash tables for efficient operations
 - Node table:
 - Ensure the uniqueness
i.e., do not create equivalent nodes twice (or more)
 - Operation result table:
 - Do not apply the same operation twice (or more)