
1

Large-Scale Knowledge Processing

 Using Binary Decision Diagrams (1)

Faculty of Information Science
and Technology, Hokkaido Univ.

Takashi Horiyama

Prev. class： Binary Decision Diagram (BDD)

◼ Representation of Boolean functions
by a directed acyclic graph

◼ Variable order

◼ Variables appear according to a total order

◼ Two rules for simplifying BDDs

◼ Remove redundant nodes

◼ Share equivalent nodes

◼ Reduce BDDs until we have
no redundant and equivalent nodes

2c.f. Lecture slides on ”Representation of Boolean functions”

◼ Representation of Boolean functions
by a directed acyclic graph

3c.f. Lecture slides on ”Representation of Boolean functions”

◼ The representation is unique
if variable order is defined

◼ Many practical Boolean functions
are compactly represented
(We can efficiently compress logical structures)

◼ Efficient operations for BDDs
[Bryant 1986]

◼ Applications in various fields

Prev. class： Binary Decision Diagram (BDD)

◼ of f = x f0 ∨ x f1

 and g = x g0 ∨ x g1

◼ f ∧ g = x (f0 ∧ g0) ∨ x (f1 ∧ g1)

4

Logical operations (Boolean operations)

Logical AND

∧ ∧ ∧

We can obtain these ANDs recursively

x

f0 f1

x

g0 g1

x

f0∧g0 f1∧g1

∧ =

f g f∧g

◼ of f = x f0 ∨ x f1

 and g = x g0 ∨ x g1

◼ f ∧ g = x (f0 ∧ g0) ∨ x (f1 ∧ g1)

5

x

f0 f1

x

g0 g1

x

f0∧g0 f1∧g1

=

f g f∧g

Logical operations (Boolean operations)
AND, OR, XOR, ...

Binary operation

We can obtain these recursively

practice： Apply logical operations

◼ Logical AND of the following two BDDs

6

This subgraph becomes
(Operation with a constant) We share

the isomorphic subgraphs

This subgraph
becomes N2
(Operation with
 a constant)

Short break

◼ Take a deep breath, and relax yourself

7

8

Shared BDDs

◼ By using the same variable order for representing BDDs,
we can share equivalent nodes of two (or more) BDDs

→ Uniqueness of Boolean functions in a BDD management system
 (No two BDDs represent the same Boolean function)

Management system:
Ensure uniqueness

◼ Equivalent nodes should be shared
(No equivalent nodes in a BDD management system)

9

Share equivalent nodes

x

f0 f1

x x

f0 f1

◼ In a BDD management system, node v is represented
as a triple of (variable name, the node pointed by the
0-edge of v, the node pointed by the 1-edge of v)

10

Node table

Management system:
Ensure uniqueness

var. 0-edge 1-edge
node
 ID

◼ In a BDD management system, node v is represented
as a triple of (variable name, the node pointed by the
0-edge of v, the node pointed by the 1-edge of v)

11

◼ Given a triple
as a request for creating a node
◼ Check : If the triple is already

registered in the node table,
return its node ID

◼ Otherwise, create a new node

◼ Node table is implemented
by a hash table
(triples are used as hash keys)

◼ Above check is done in O(1) time

Hash table is the key
for managing BDDs efficiently

Management system:
Ensure uniqueness

Node table
var. 0-edge 1-edge

node
 ID

◼ In a BDD management system, node v is represented
as a triple of (variable name, the node pointed by the
0-edge of v, the node pointed by the 1-edge of v)

◼ In a BDD management system, node v is represented
as a triple of (variable name, the node pointed by the
0-edge of v, the node pointed by the 1-edge of v) 12

◼ Given a triple
as a request for creating a node
◼ Check : If the triple is already

registered in the node table,
return its node ID

◼ Otherwise, create a new node

◼ Node table is implemented
by a hash table
(triples are used as hash keys)

◼ Above check is done in O(1) time

Hash table is the key
for managing BDDs efficiently

Management system:
Ensure uniqueness

Node table
var. 0-edge 1-edge

node
 ID

In case the 0-edge and the 1-edge point to
the same node (i.e., same Boolean function),
return its node ID

Delete a
redundant node

x

f f

Due to the uniqueness
of Boolean functions,
the isomorphism of
the subgraphs can be
checked simply by
comparing their node IDs

Node request :
 GetNode(x, Nf0, Nf1)

1. If Nf0 = Nf1 , return Nf0

2. If triple (x, Nf0, Nf1) is already registered
in the node table, return its node ID

3. Otherwise, register (x, Nf0, Nf1) in the node table,
and return its node ID

13

Short break

◼ Take a deep breath, and relax yourself

14

practice： Apply logical operations

◼ Logical AND of the following two BDDs

15

Recursion to the children pointed
by the 0-edges and 1-edges

◼ At first, we create
node N i pointed by the 0-edge
 and
node Nj pointed by the 1-edge

◼ Then, GetNode(x1, N i, Nj)

◼ Logical AND of the following two BDDs

16

Return N0 Return N2

GetNode() for N2 ∧ N3 is called after creating the subgraphs
pointed by the 0-edge and the 1-edge of N2 ∧ N3
→ The isomorphic subgraphs are created twice, then they are shared ...
 (This approach is time consuming....)

practice： Apply logical operations

We share
the isomorphic subgraphs

◼ Register the results of logical operations
in the operation result table
(hash table)

◼ Hash key :
triple (op, Nf, Ng), where
op is operation ID
 (representing AND, OR, ...),
Nf is node ID of node f,

 Ng is node ID of node g

◼ Operation result table
returns the node ID of
the root node of the resulting BDD

17

Management system:
Do not apply the same operation twice (or more)

We share
the isomorphic subgraphs

x

f0 f1 g

∧ =

f g

18

In case the root nodes of f and ghave different vars.

p. 4 is the case when the root nodes of f and g have the same variable

By definition, f ∧ g = x (f0 ∧ g0) ∨ x (f1 ∧ g1)

In case g does not depend on x ?

By definition, f ∧ g = x (f0 ∧ g0) ∨ x (f1 ∧ g1)

In case g does not depend on x ?

 f ∧ g = x (f0 ∧ g) ∨ x (f1 ∧ g)

x

f0∧g f1∧g

f∧g
x

f0 f1 g

∧ =

f g

In case the root nodes of f and ghave different vars.

19

p. 4 is the case when the root nodes of f and g have the same variable

Apply operation
 Apply(op, Nf, Ng)

1. If at least one of Nf and Ng is a constant node, or if Nf = Ng holds,
return the node ID of the resulting BDD (according to op)
(e.g., 0 ∧ Nf = 0, 1 ∧ Nf = Nf, Nf ∧ Nf = Nf)

2. If (op, Nf, Ng) is registered in the operation result table,
return the node ID of the result

3. If variables xf and xg are the same

3-1. Nh0 := Apply(op, Nf0, Ng0), Nh1 := Apply(op, Nf1, Ng1)

3-2. If Nh0 = Nh1 holds, return Nh0

 Otherwise, return the resulting node ID of GetNode(xf, Nh0, Nh1)

4. If variable xf appears in higher level than xg

4-1. Nh0 := Apply(op, Nf0, Ng), Nh1 := Apply(op, Nf1, Ng)

4-2. Same as 3-2

5. If variable xf appears in lower level than xg

◼ Same as 4 (exchange the roles of Nf and Ng)

20

Nf: (xf, Nf0, Nf1)

Ng: (xg, Ng0, Ng1)

Time complexity of Apply operation

◼ Worst-case time complexity : O(|f| |g|)
◼ This is because the size of the resulting BDD of the

operation can be O(|f| |g|)

◼ For a long time, the time complexity is believed to be
less than O(|f| |g|) in case the size of the resulting
BDD is small

◼ Unfortunately, however, it is proved that
“even if the sizes of the input and result BDDs are
 small, there exists an instance that requires
 O(|f| |g|) time”

◼ Empirically, in many cases, we can apply operations
within the time proportional to |f| + |g|

21

[Yoshinaka et al. 2012]

By utilizing hash tables

◼ Reference count of node v :

◼ The number of reference from other nodes (i.e., in-degree
of v ; how many times node v is pointed from other nodes)

◼ In many BDD management systems,
reference counter is used in the node table

◼ How to use reference counter ?

◼ Repetition of GetNode() (i.e., creating nodes) floods
the node table

◼ Garbage collection: Recycle nodes of reference count 0

◼ Things to consider

◼ Recycled nodes still exist in the operation result table
→ We need to clear the operation result table (whole table)

◼ Suppose that we recycle a node in each time when the
reference count becomes 0 (which means clearing the op. table)
→ The efficiency of the operation result table is spoiled

◼ Garbage collection is done when the node table is almost full

Extra： Reference counter

◼ Represent the following Boolean functions by BDDs

1. AND: x1 x2 x3 x4

2. OR : x1 ∨ x2 ∨ x3 ∨ x4

3. Combination of AND and OR: (x1 ∨ x2) x3

4. Exclusive-OR (XOR) : x1 + x2 + x3 + x4

◼ Three ways for creating BDDs
◼ Create a truth table → decision tree → BDD

◼ Create a BDD from top by considering the subfunctions
 (p. 6)

◼ Create a BDD by Apply operations (see the following page)

23

practice： Create BDDs

◼ (x1 ∨ x2) x3

24

Create a BDD by Apply operations

In BDD management systems,
BDDs are processed as a form of
shared BDDs

∨ ∧
x1

x2

(x1 ∨ x2)

x3

(x1 ∨ x2) x3

Summary

◼ Binary Decision Diagram (BDD)

◼ Apply operations on two BDDs

◼ Recursion

Techniques for efficient manipulation

◼ Shared BDDs : Uniqueness of Boolean functions

◼ Two hash tables for efficient operations

◼ Node table:
◼ Ensure the uniqueness

 i.e., do not create equivalent nodes twice (or more)

◼ Operation result table:
◼ Do not apply the same operation twice (or more)

25

	スライド 1
	スライド 2: Prev. class： Binary Decision Diagram (BDD)
	スライド 3: Prev. class： Binary Decision Diagram (BDD)
	スライド 4: Logical operations (Boolean operations)
	スライド 5: Logical operations (Boolean operations)
	スライド 6: practice： Apply logical operations
	スライド 7: Short break
	スライド 8: Shared BDDs
	スライド 9: Management system: Ensure uniqueness
	スライド 10: Management system: Ensure uniqueness
	スライド 11: Management system: Ensure uniqueness
	スライド 12: Management system: Ensure uniqueness
	スライド 13: Node request : GetNode(x, Nf0, Nf1)
	スライド 14: Short break
	スライド 15: practice： Apply logical operations
	スライド 16: practice： Apply logical operations
	スライド 17: Management system: Do not apply the same operation twice (or more)
	スライド 18: In case the root nodes of f and ghave different vars.
	スライド 19: In case the root nodes of f and ghave different vars.
	スライド 20: Apply operation Apply(op, Nf, Ng)
	スライド 21: Time complexity of Apply operation
	スライド 22: Extra： Reference counter
	スライド 23: practice： Create BDDs
	スライド 24: Create a BDD by Apply operations
	スライド 25: Summary
	スライド 26

