
1

大規模知識処理特論

二分決定グラフの利用 (1)

北海道大学 情報科学研究院

堀山 貴史

復習： 二分決定グラフ (BDD)

◼ 有向非巡回グラフによる論理関数の表現法

◼ 変数順序

◼ 全順序関係にしたがって、変数が出現

◼ 2つの簡約化規則を適用

◼ 冗長な節点の削除 / 等価な節点の共有

◼ 既約化 :
 冗長/等価な節点がなくなるまで

2

Binary Decision Diagram

資料「論理関数の表現方法」を参照

復習： 二分決定グラフ (BDD)

◼ 有向非巡回グラフによる論理関数の表現法

◼ 変数順序

◼ 全順序関係にしたがって、変数が出現

◼ 2つの簡約化規則を適用

◼ 冗長な節点の削除 / 等価な節点の共有

◼ 既約化 :
 冗長/等価な節点がなくなるまで

3

Binary Decision Diagram

◼ 変数順序を定めると表現が一意に定まる

◼ 多くの実用的な論理関数をコンパクトに表現
(論理構造を効率的に圧縮して持てる)

◼ BDDに対する効率的な演算 [Bryant 1986]

◼ 近年、様々な分野での応用に

論理演算

◼ f = x f0 ∨ x f1 と

 g = x g0 ∨ x g1 との 論理積

◼ f ∧ g = x (f0 ∧ g0) ∨ x (f1 ∧ g1)

4

x

f0 f1

x

g0 g1

x

f0∧g0 f1∧g1

∧ =

f g f∧g

論理演算

◼ f = x f0 ∨ x f1 と

 g = x g0 ∨ x g1 との 2 項演算 (AND, OR, XOR など)

◼ f ∧ g = x (f0 ∧ g0) ∨ x (f1 ∧ g1)

5

x

f0 f1

x

g0 g1

x

f0∧g0 f1∧g1

=

f g f∧g

演習問題： 論理演算

◼ 以下の 2 つの BDD の論理積

6

を付けたい
(定数との演算)

共有したい

N ’2 以下を
付けたい
(定数との…)

休 憩

◼ ここで、少し休憩しましょう。

◼ 深呼吸したり、肩の力を抜いてから、
次のビデオに進んでください。

7

8

Shared BDD

◼ BDD 処理系内で、変数順序をそろえ、等価な節点を共有

→ 関数の一意性
 (処理系内で、同じ関数を表す BDD は 1 つだけ)

処理系内で、一意性を保つ

◼ 等価な節点を必ず共有し、1 つにまとめる
(等価な節点が2 つ以上あってはいけない)

◼ 変数番号、0-枝の指す節点番号、1-枝の指す節点番号
の3 つ組で、節点を管理 9

等価な節点の共有

x

f0 f1

x x

f0 f1

処理系内で、一意性を保つ

◼ 変数番号、0-枝の指す節点番号、1-枝の指す節点番号
の3 つ組で、節点を管理 10

節点テーブル

処理系内で、一意性を保つ

◼ 変数番号、0-枝の指す節点番号、1-枝の指す節点番号
の3 つ組で、節点を管理 11

節点テーブル
◼ 節点は3つ組で要求する

◼ 既に登録されていれば、
その節点番号を返す

◼ 未登録なら、新しい節点を作る

◼ 3つ組がキーのハッシュを利用

◼ チェックが O(1) 時間

ハッシュの活用が
BDD の高速処理の鍵

処理系内で、一意性を保つ

◼ 変数番号、0-枝の指す節点番号、1-枝の指す節点番号
の3 つ組で、節点を管理 12

節点テーブル
◼ 節点は3つ組で要求する

◼ 既に登録されていれば、
その節点番号を返す

◼ 未登録なら、新しい節点を作る

◼ 3つ組がキーのハッシュを利用

◼ チェックが O(1) 時間

ハッシュの活用が
BDD の高速処理の鍵

0-枝の先と 1-枝の先が同じ場合は、
その節点番号を返す

冗長な節点
の削除

x

f f

関数の一意性のため、
部分グラフの比較が
頂点番号を比較のみで
実行できる

節点要求
 GetNode(x, Nf0, Nf1)

1. Nf0 = Nf1 なら、Nf0 を返す

2. 節点テーブルに (x, Nf0, Nf1) があれば、
その節点番号を返す

3. 未登録なら、0-枝の先が Nf0 で 1-枝の先が Nf1 となる
ラベル x の節点を新しく節点テーブルに作って、
その節点番号を返す

13

休 憩

◼ ここで、少し休憩しましょう。

◼ 深呼吸したり、肩の力を抜いてから、
次のビデオに進んでください。

14

演習問題： 論理演算

◼ 以下の 2 つの BDD の論理積

15

0-枝の指す節点 N i と

 1 -枝の指す節点 Nj が

決まってから、

(x1, N i, Nj) を要求する

0-枝と 1-枝の子供への再帰的な処理

演習問題： 論理演算

◼ 以下の 2 つの BDD の論理積

16

N0 を返す

共有したい

N2 を返す

節点を要求するのは、0-枝, 1-枝の先が決まってから
→ N2 ∧ N3 をそれぞれ計算してから共有することに...

同じ演算を何度も繰り返さない

◼ 過去の演算の結果を、
演算キャッシュ (ハッシュ) に登録

◼ 演算の種類 op、f の節点番号 Nf、

 g の節点番号 Ng の

 3つ組 (op, Nf, Ng) がキー

◼ 演算結果の節点番号を返す

17

共有したい

もともとは、 f ∧ g = x (f0 ∧ g0) ∨ x (f1 ∧ g1)

g が x に依存しないなら ?

x

f0 f1 g

∧ =

f g

最上位の変数のラベルが異なる場合

18

もともとは、 f ∧ g = x (f0 ∧ g0) ∨ x (f1 ∧ g1)

g が x に依存しないなら ?

 f ∧ g = x (f0 ∧ g) ∨ x (f1 ∧ g)

x

f0∧g f1∧g

f∧g
x

f0 f1 g

∧ =

f g

最上位の変数のラベルが異なる場合

19

2項演算
 Apply(op, Nf, Ng)

1. Nf, Ng の少なくとも一方が定数節点 or Nf = Ng なら
op に応じた節点番号を返す

2. 演算キャッシュに (op, Nf, Ng) があれば、その節点番号を返す

3. 変数 xf と xg が同じなら

◼ Nh0 := Apply(op, Nf0, Ng0), Nh1 := Apply(op, Nf1, Ng1)

◼ Nh0 = Nh1 なら Nh0 を返す

◼ そうでないなら GetNode(xf, Nh0, Nh1) の結果を返す

4. 変数 xf が 変数 xg よりも上位なら

◼ Nh0 := Apply(op, Nf0, Ng), Nh1 := Apply(op, Nf1, Ng)

◼ 以降は 3 と同様

5. 変数 xf が 変数 xg よりも下位なら

◼ 4 と同様 (Nf, Ng の役割を交換する)
20

Nf: (xf, Nf0, Nf1)

Ng: (xg, Ng0, Ng1)

Apply 演算の計算量

◼ 最悪の場合の計算時間は、 O(|f| |g|)

 出力の BDD のサイズが O(|f| |g|) になりえるため

◼ 長らく、出力の BDD のサイズが小さければ、
O(|f| |g|) 時間より速く計算できると思われていた

◼ 入力や出力の BDD のサイズが小さくても、
O(|f| |g|) 時間かかる例が見つかった

◼ 経験的には、f, g の BDD のサイズ |f|, |g| に

 比例する時間 O(|f| + |g|) で

 Apply 演算ができることが多い

21

[Yoshinaka et al. 2012]

ハッシュの活用

◼ 節点テーブルでは、各節点が他の節点から
参照されている回数 (指されている回数; 入次数) を
管理することが多い

◼ なぜ ?

◼ GetNode を繰り返すと、節点テーブルがあふれる

◼ 参照されている回数が 0 の節点を回収して再利用

◼ 考慮すべき点

◼ 節点を回収しただけでは、演算キャッシュが問題に

→ 演算キャッシュをクリアする

◼ 参照カウンタが 0 になるたびに回収すると、
演算キャッシュの効率が悪い

→ まとめて回収する 22

おまけ： 参照カウンタ

◼ 以下の論理関数を、BDD で表しなさい

1. 論理積 (AND): x1 x2 x3 x4

2. 論理和 (OR) : x1 ∨ x2 ∨ x3 ∨ x4

3. AND, OR の組合せ : (x1 ∨ x2) x3

4. 排他的論理和 (XOR) : x1 + x2 + x3 + x4

◼ 補足

◼ 真理値表 → 決定木 → BDD の方法

◼ 意味を考えて、上から BDD を作る方法

◼ Apply 演算を繰り返して BDD を作る方法

23

演習問題： BDD の作成

◼ (x1 ∨ x2) x3

24

Apply演算を繰り返して BDD を作る

実際には、Shared BDD の
形で処理される

まとめ

◼ 二分決定グラフ (BDD)

◼ 2つの BDD の論理演算

高速化の仕組み

◼ Shared BDD : 処理系内で、関数を一意に表す

◼ 2 つのハッシュを利用して、演算を高速化

◼ 節点テーブル : 等価な節点を何個も作らない

◼ 演算結果テーブル : 同じ演算を何回も実行しない

25

	スライド 1
	スライド 2: 復習： 二分決定グラフ (BDD)
	スライド 3: 復習： 二分決定グラフ (BDD)
	スライド 4: 論理演算
	スライド 5: 論理演算
	スライド 6: 演習問題： 論理演算
	スライド 7: 休 憩
	スライド 8: Shared BDD
	スライド 9: 処理系内で、一意性を保つ
	スライド 10: 処理系内で、一意性を保つ
	スライド 11: 処理系内で、一意性を保つ
	スライド 12: 処理系内で、一意性を保つ
	スライド 13: 節点要求 GetNode(x, Nf0, Nf1)
	スライド 14: 休 憩
	スライド 15: 演習問題： 論理演算
	スライド 16: 演習問題： 論理演算
	スライド 17: 同じ演算を何度も繰り返さない
	スライド 18: 最上位の変数のラベルが異なる場合
	スライド 19: 最上位の変数のラベルが異なる場合
	スライド 20: 2項演算 Apply(op, Nf, Ng)
	スライド 21: Apply 演算の計算量
	スライド 22: おまけ： 参照カウンタ
	スライド 23: 演習問題： BDD の作成
	スライド 24: Apply演算を繰り返して BDD を作る
	スライド 25: まとめ
	スライド 26

