i

Large-Scale Knowledge Processing

Using Binary Decision Diagrams (2)

Faculty of Information Science
and Technology, Hokkaido Univ.

Takashi Horiyama

Application of BDDs:
Design and verification of logic circuits

m Verification: Equivalence of combinatorial circuits

Description of the specification (What are outputted from
the inputs) and designed circuit (In many case, it is
optimized by a designh compiler)

Reference circuit and designed circuit

Combinatorial

/ circuit X1
y -

Specification “ :D_
Z—*

m Exhaustively check whether the outputs of the above two (“spec.
and circuit” etc.) are the same for all inputs (If we use truth
tables, we need to check all 2" cases ...)

m Represent both Boolean functions of the spec. and the designed
circuit by BDDs

Same Boolean functions have the same root node (Uniqueness) 2

Application of BDDs:
Design and verification of logic circuits

Sequential circuits (circuits that have states, where the
states changes according to the inputs)

Check whether all sequences of the outputs are the same
for all sequences of the inputs (This check is much more
difficult than that for combinatorial circuits)

States are stored in registers (memory elements)
Exhaustively check state transitions on all inputs

B

register

Application of BDDs:
Combinatorial problems and optimization

Represent a combinatorial problem by Boolean variables

More precisely, represent constraints (conditions o be
satisfied) of a combinatorial problem by Boolean functions

Construct a BDD representing the AND of the Boolean
functions representing the constraints

We have all feasible solutions |

If we have BDDs, it is easy to evaluate
the linear sum of the costs

We can easily obtain @‘
the optimal solutions from BDDs ! g

Using BDDs (1)

m Determine whether a given combination is
a feasible solution or not

Traverse a BDD from the root node
Ex.) { X1, x3}? -~ Yes since (x4, x5, x3) = (1, 0, 1) gives
{ X5 } ? -+ No since (X1, X2, x3) = (0, 1, 0) gives

m Enumerate all solutions from a BDD
Depth first search
When we come to the 1-node, A@\
we have a feasible solution @\
Ex.) {x5, x5}, {xq, X3}, E o

{Xl, Xz}, {xl, X2, X3} @K
/o

0 1

Using BDDs (2)

m Evaluation of the linear sum of the cost

At each node, the costs for its O-edge and 1-edge are
compared, and the better edge is adopted

The cost of the root node is the optimal value
Ex.) minimize -4 x;-5x,+2 x3

maximize 3 X; -5 X, + 2 X3

-9 O-edge: cost -3 5
@i—edge: cost -5 - 4 @\
A" _5 —3 A" 2
O-edge: cost 2
1-edge: cost -5 : A

2
O-edge: x (no feasible solution) ;
1-edge: feasible solution with cost 2 *

a

0 1 0 1 6

S:horf break

m Take a deep breath, and relax yourself

Combinatorial optimization: 9
Knapsack problem

Utility 36 27 12 50 28 24

s We can buy shacks within 100 yen
(i.e., the budget is 100 yen)

We can adopt (i.e., take) at most 1 piece for each item
We cannot divide an item

m We'd like to maximize the sum of the utilities

The images of the snacks are from the web sites of Meiji Co. Ltd., and Morinaga & Co., Ltd.
https://www.meiji.co.jp https://www.morinaga.co.jp 8

Knapsack problem : Variable x; =

Item | Item; | Item, | Item3 | Item, | Itemy | Itemg
Price yen| 60 yen 30 yen 40 yen 50 yen 40 yen 30 yen
Utility | 36 | 27 | 12 | 50 | 28 | 24

{ 1 .-+ We take item;
X =

O - Do not take item;

s We can buy snacks within 100 yen
(i.e., the budget is 100 yen)

60 x1 + 30 X, + 40 x3 + 50 x4 + 40 X5 + 30 X¢ = 100

9

0
Knapsack problem : Formulation @

Item | Item; | Item, | Item3 | Item, | Itemy | Itemg

Price gen)| pq P, P3 P4 P5 Pé

UTIIITY Ul UZ U3 U4 U5 U6

m Objective function
Maximize : > ?: 1 Ui X;

m Constraints 0-1 integer
6

> -1 p;x; =100 programming problem
x; € {0,1} (i=12,..,6)

10

Combinatorial optimization:
Knapsack problem

m Represent constraint Z; p; x, = ¢ by a BDD

(How ? — see the next slide)

= Maximize the objective function Z; u; x;
(see p. 6)

11

Represent the constraint of the
knapsack problem by a BDD

Budget is take
2R
do not
take itemsy

Item | Itemg | Itemy | Items | Item,

I’reml

Budget —
100 yen Price yem| 60 yen 30 yen 30 yen 60 yen

30 yen

Utility | 36 27 12 50

28

12

Represent the constraint of the
knapsack problem by a BDD

100

Budget becomes 40 yen
A since we take Itemg (60 yen)

Budget
100 yen

Item

ITem5

ITem4

I’rem3

I‘remz

I’reml

Price (yen)

60 yen

30 yen

30 yen

60 yen

30 yen

Utility

36

27

12

50

28

13

Represent the constraint of the
knapsack problem by a BDD

=y

@) @) " “@

Item | Itemg | Itemy | Items | Item,

I’reml

Budget —
100 yen Price wen| 60 yen 30 yen 30 yen 60 yen

30 yen

Utility | 36 27 12 50

28

14

Represent the constraint of the
knapsack problem by a BDD

T

Equivalent nodes

are shared
(Budget for this
subproblem is 10)

J

15

Represent the constraint of the
knapsack problem by a BDD

16

Represent the constraint of the
knapsack problem by a BDD

m Once the BDD representing the constraints are
obtained, it is easy to minimize/maximize
the linear sum of the costs

= Note that, however, if our task is just an optimization,
it is not recommended to construct BDDs
(since it requires much computation tfime and
huge memory consumption)

m Benefits of constructing BDDs

Optimization with changing the objective function
(We can ovoid searching the solution space twice or
more for different objective function)

We can combine the BDDs with other constraints
(Apply operation is easy) o

Summary

m Design and verification of logic circuits

s Combinatorial problems and optimization

Determine whether a given combination is a feasible
solution or not

Evaluate the linear sum of the costs
Ex.) Knapsack problem

18

	スライド 1
	スライド 2: Application of BDDs : Design and verification of logic circuits
	スライド 3: Application of BDDs : Design and verification of logic circuits
	スライド 4: Application of BDDs : Combinatorial problems and optimization
	スライド 5: Using BDDs (1)
	スライド 6: Using BDDs (2)
	スライド 7: Short break
	スライド 8: Combinatorial optimization : Knapsack problem
	スライド 9: Knapsack problem : Variable xi
	スライド 10: Knapsack problem : Formulation
	スライド 11: Combinatorial optimization : Knapsack problem
	スライド 12: Represent the constraint of the knapsack problem by a BDD
	スライド 13: Represent the constraint of the knapsack problem by a BDD
	スライド 14: Represent the constraint of the knapsack problem by a BDD
	スライド 15: Represent the constraint of the knapsack problem by a BDD
	スライド 16: Represent the constraint of the knapsack problem by a BDD
	スライド 17: Represent the constraint of the knapsack problem by a BDD
	スライド 18: Summary
	スライド 19

