
1

Large-Scale Knowledge Processing

 Using Binary Decision Diagrams (2)

Faculty of Information Science
and Technology, Hokkaido Univ.

Takashi Horiyama

Application of BDDs:
Design and verification of logic circuits

◼ Verification : Equivalence of combinatorial circuits
◼ Description of the specification (What are outputted from

the inputs) and designed circuit (In many case, it is
optimized by a design compiler)

◼ Reference circuit and designed circuit

2

Specification

x

y

z

Combinatorial
circuit

◼ Exhaustively check whether the outputs of the above two (“spec.
and circuit” etc.) are the same for all inputs (If we use truth
tables, we need to check all 2n cases ...)

◼ Represent both Boolean functions of the spec. and the designed
circuit by BDDs
◼ Same Boolean functions have the same root node (Uniqueness)

◼ Sequential circuits (circuits that have states, where the
states changes according to the inputs)

◼ Check whether all sequences of the outputs are the same
for all sequences of the inputs (This check is much more
difficult than that for combinatorial circuits)

◼ States are stored in registers (memory elements)

◼ Exhaustively check state transitions on all inputs

3

x
y

register

Application of BDDs:
Design and verification of logic circuits

◼ Represent a combinatorial problem by Boolean variables

◼ More precisely, represent constraints (conditions to be
satisfied) of a combinatorial problem by Boolean functions

◼ Construct a BDD representing the AND of the Boolean
functions representing the constraints

◼ We have all feasible solutions !

◼ If we have BDDs, it is easy to evaluate
the linear sum of the costs

◼ We can easily obtain
the optimal solutions from BDDs !

4

Application of BDDs:
Combinatorial problems and optimization

Using BDDs (1)

◼ Determine whether a given combination is
a feasible solution or not

◼ Traverse a BDD from the root node

◼ Ex.) { x1, x3 } ? … Yes since (x1, x2, x3) = (1, 0, 1) gives
 { x2 } ? … No since (x1, x2, x3) = (0, 1, 0) gives

◼ Enumerate all solutions from a BDD

◼ Depth first search

◼ When we come to the 1-node,
we have a feasible solution

◼ Ex.) {x2, x3}, {x1, x3},
 {x1, x2}, {x1, x2, x3}

5

0

1

◼ Evaluation of the linear sum of the cost
◼ At each node, the costs for its 0-edge and 1-edge are

compared, and the better edge is adopted

◼ The cost of the root node is the optimal value

Ex.) minimize – 4 x1 – 5 x2 + 2 x3

6

maximize 3 x1 - 5 x2 + 2 x3

2

-3 -5

-9

2

-3 2

5

Using BDDs (2)

0-edge: x (no feasible solution)
1-edge: feasible solution with cost 2

0-edge: cost 2
1-edge: cost -5

0-edge: x
1-edge:
cost 2 - 5

0-edge: cost -3
1-edge: cost -5 - 4

Short break

◼ Take a deep breath, and relax yourself

7

60 yen 30 yen 40 yen40 yen 50 yen 30 yenPrice

Utility 36 27 2812 50 24

◼ We can buy snacks within 100 yen
(i.e., the budget is 100 yen)
◼ We can adopt (i.e., take) at most 1 piece for each item
◼ We cannot divide an item

◼ We’d like to maximize the sum of the utilities

8
The images of the snacks are from the web sites of Meiji Co. Ltd., and Morinaga & Co., Ltd.
https://www.meiji.co.jp https://www.morinaga.co.jp

Combinatorial optimization:
Knapsack problem

9

Knapsack problem : Variable xi

◼ xi =

◼ We can buy snacks within 100 yen
(i.e., the budget is 100 yen)

◼ 60 x1 + 30 x2 + 40 x3 + 50 x4 + 40 x5 + 30 x6 ≦ 100

1 … We take itemi

0 … Do not take itemi

60 yen 30 yen 40 yen40 yen 50 yen 30 yen

Utility 36 27 2812 50 24

Item1 Item2 Item5Item3 Item4 Item6Item

Price (yen)

Knapsack problem : Formulation

10

p1 p2 p5p3 p4 p6

u1 u2 u5u3 u4 u6

◼ Objective function

◼ Maximize : ∑ i = 1 ui xi
6

◼ Constraints

◼ ∑ i = 1 pi xi ≦ 100

◼ xi ∊ { 0, 1 } (i = 1, 2, ..., 6)

6
0-1 integer
programming problem

Utility

Price (yen)

Item1 Item2 Item5Item3 Item4 Item6Item

Combinatorial optimization:
Knapsack problem

◼ Represent constraint Σi pi xi ≦ c by a BDD

 (How ? → see the next slide)

◼ Maximize the objective function Σi ui xi
(see p. 6)

11

Represent the constraint of the
knapsack problem by a BDD

12

Budget
100 yen

do not
take item5

take
item5

60 yen 30 yen 30 yen30 yen 60 yen

Utility 36 27 2812 50

Item5 Item4 Item1Item3 Item2Item

Price (yen)

Budget is
100 yen

13

Represent the constraint of the
knapsack problem by a BDD

Budget becomes 40 yen
since we take Item5 (60 yen)

Budget
100 yen 60 yen 30 yen 30 yen30 yen 60 yen

Utility 36 27 2812 50

Item5 Item4 Item1Item3 Item2Item

Price (yen)

14

Represent the constraint of the
knapsack problem by a BDD

Budget
100 yen 60 yen 30 yen 30 yen30 yen 60 yen

Utility 36 27 2812 50

Item5 Item4 Item1Item3 Item2Item

Price (yen)

15

Represent the constraint of the
knapsack problem by a BDD

Equivalent nodes
are shared
(Budget for this
 subproblem is 10)

16

Represent the constraint of the
knapsack problem by a BDD

◼ Once the BDD representing the constraints are
obtained, it is easy to minimize/maximize
the linear sum of the costs

◼ Note that, however, if our task is just an optimization,
it is not recommended to construct BDDs
(since it requires much computation time and
 huge memory consumption)

◼ Benefits of constructing BDDs
◼ Optimization with changing the objective function

(We can ovoid searching the solution space twice or
 more for different objective function)

◼ We can combine the BDDs with other constraints
(Apply operation is easy)

17

Represent the constraint of the
knapsack problem by a BDD

Summary

◼ Design and verification of logic circuits

◼ Combinatorial problems and optimization
◼ Determine whether a given combination is a feasible

solution or not

◼ Evaluate the linear sum of the costs

◼ Ex.） Knapsack problem

18

	スライド 1
	スライド 2: Application of BDDs : Design and verification of logic circuits
	スライド 3: Application of BDDs : Design and verification of logic circuits
	スライド 4: Application of BDDs : Combinatorial problems and optimization
	スライド 5: Using BDDs (1)
	スライド 6: Using BDDs (2)
	スライド 7: Short break
	スライド 8: Combinatorial optimization : Knapsack problem
	スライド 9: Knapsack problem : Variable xi
	スライド 10: Knapsack problem : Formulation
	スライド 11: Combinatorial optimization : Knapsack problem
	スライド 12: Represent the constraint of the knapsack problem by a BDD
	スライド 13: Represent the constraint of the knapsack problem by a BDD
	スライド 14: Represent the constraint of the knapsack problem by a BDD
	スライド 15: Represent the constraint of the knapsack problem by a BDD
	スライド 16: Represent the constraint of the knapsack problem by a BDD
	スライド 17: Represent the constraint of the knapsack problem by a BDD
	スライド 18: Summary
	スライド 19

