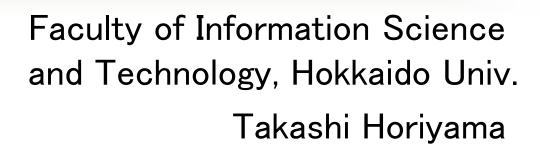
Large-Scale Knowledge Processing Optimization Techniques (Part 1)



Mathematical programming and optimization Mathematical programming model

- Find the optimal solution
- What is the target for the optimization?
- Objective of the optimization?

Production planning problem

- Maximum profit?
 We produce two products 1 and 2 from two materials A and B
 - Material usage per unit of product and the amount of available materials

	Product 1 (10 ³ kg)	Product 2 (10 ³ kg)	Available materials (10 ³ kg)
Material A	2	2	4
Material B	3	6	8

- Profit per unit of product
 - Product 1: 4
 - Product 2: 5

Formulation of production planning

- Represent as mathematical models
- Let x₁, x₂ be the volumes of products 1, 2
- Objective: Maximize the profit
 - Maximize $4 x_1 + 5 x_2$
- Condition: Available materials
 - Material A: $2 x_1 + 2 x_2 \leq 4$
 - Material B: $3 x_1 + 6 x_2 \le 8$
- Condition: Volumes of the products should be non-negative
 - Product 1: $x_1 \ge 0$
 - Product 2: $x_2 \ge 0$

Formulation of production planning

- Let x₁, x₂ be the volumes of products 1, 2
 ← decision variables, variables
- maximize $4 \times_1 + 5 \times_2 \leftarrow \text{Objective function}$ subject to $2 \times_1 + 2 \times_2 \leq 4 \leftarrow \text{Constraints}$ $3 \times_1 + 6 \times_2 \leq 8$ $x_1 \geq 0, x_2 \geq 0$
- Linear programming problem
 - Objective function is a linear function
 - maximize or minimize the objective function
 - All constraints are linear inequalities or equalities

Production planning problem

- If the volumes of the products are limited to integers...
- maximize $4 x_1 + 5 x_2$ subject to $2 x_1 + 2 x_2 \le 4$ $3 x_1 + 6 x_2 \le 8$ $x_1 \ge 0, x_2 \ge 0, x_1, x_2$ are integers

■ Integer programming problem

- Variables are limited to be integers
- 0-1 integer programming problem
 Wariables are 0 or 1
- Mixed integer programming problem
 - · · · Some variables are integers/Others are real numbers

practice: Formulation of product planning

- Maximum profit?
 We produce three products 1, 2 and 3 from four materials A, B, C and D
 - Material usage per unit of product and the amount of available materials

		Product 2 (10 ³ kg)		Available Material (10 ³ kg)
Material A	4	2	1	6
Material B	1	2	4	7
Material C	5	2	3	9
Material D	3	3	2	8

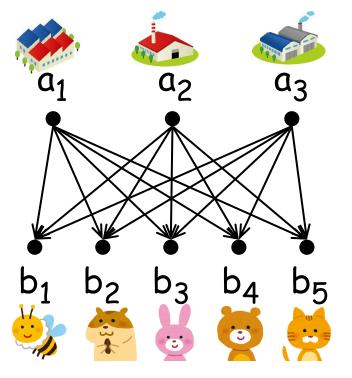
- Profit per unit of product
 - Product 1: 3, Product 2: 5, Product 3: 4

practice: Formulation of product planning

- Maximum profit?
 We produce n kinds of products P_1 , P_2 , ..., P_n from m kinds of materials S_1 , S_2 , ..., S_m
 - c_{ij}: Necessary amount of material S_j for producing a unit of product P_i
 - ullet b_j: Available amount of material S_j
 - a_i : Profit per unit of product P_i

Transportation problem

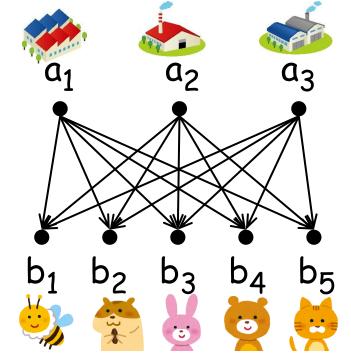
- Transport products from factories 1, 2, 3 to consumers 1, 2, 3, 4, 5
- Minimize transportation costs



- a_i: The amount of products factory i can ship in a month
- b_j: Demand by consumer j in a month
- c_{ij} : Transportation cost (per unit of product) from factory i to consumer j

Transportation problem

- Let x_{ij} be the amount of the products shipped from factory i to consumer j



subject to
$$\sum_{j=1}^{5} x_{ij} \le a_i$$
 (i = 1, 2, 3)

Factory i

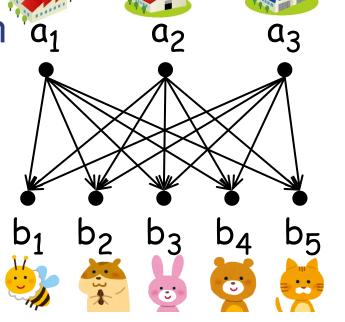
$$\sum_{j=1}^{3} x_{ij} \ge b_{j} \quad (j = 1, 2, ..., 5)$$

Consumer j

$$x_{ij} \ge 0$$
 (i = 1, 2, 3, j = 1, 2, ..., 5)

Facility location problem

In the problem in p. 9
 we need cost d;
 for running factory i
 (In case we do not use factory i,
 its cost becomes 0)



We need to minimize the sum
 of the transportation cost
 and the running cost of the factories

Formulation of facility location problem

- x_{ij} : the amount from factory i to consumer j y_i : run factory i, or not $(y_i = 1 \cdots \text{ run factory i}, y_i = 0 \cdots \text{ do not use factory i})$
- minimize $\sum_{i=1}^{3} \sum_{j=1}^{5} c_{ij} x_{ij} + \sum_{i=1}^{3} d_i y_i$

Factory i
$$\sum_{j=1}^{5} x_{ij} \leq a_{i} y_{i}$$

$$\begin{cases} \sum_{j=1}^{5} x_{ij} \leq a_{i} & \text{Run factory i } (y_{i} = 1) \\ \sum_{j=1}^{5} x_{ij} = 0 & \text{Do not use factory i } (y_{i} = 0) \\ 12 \end{cases}$$

Formulation of facility location problem

- **a** x_{ij} : the amount from factory i to consumer j y_i : run factory i, or not $(y_i = 1 \cdots \text{ run factory i}, y_i = 0 \cdots \text{ do not use factory i})$
- minimize $\sum_{i=1}^{3} \sum_{j=1}^{5} c_{ij} x_{ij} + \sum_{i=1}^{3} d_i y_i$

subject to
$$\sum_{j=1}^{5} x_{ij} \le a_i y_i$$
 (i = 1, 2, 3)

Factory i

$$\sum_{i=1}^{3} x_{ij} \ge b_j$$
 (j = 1, 2, ..., 5) Consumer j

$$x_{ij} \ge 0$$
 (i = 1, 2, 3, j = 1, 2, ..., 5)
 $y_i \in \{0, 1\}$ (i = 1, 2, 3)

Short break

■ Take a deep breath, and relax yourself

Linear programming

How to solve linear programming problem ?

Practice: Solve by drawing

- Optimal solution? $(x_1, x_2) =$
- Optimal value?

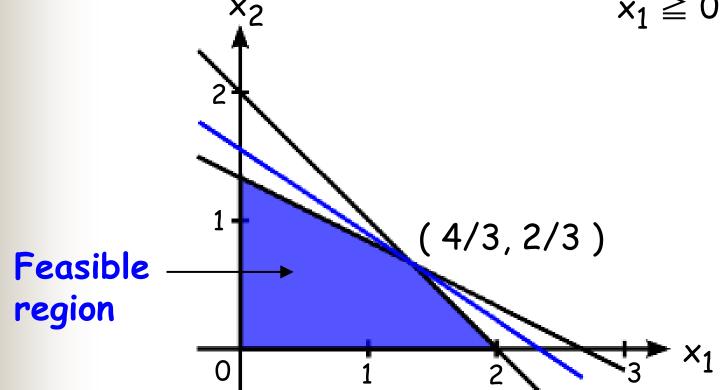
maximize subject to

$$4 x_1 + 5 x_2$$

subject to
$$2x_1 + 2x_2 \le 4$$

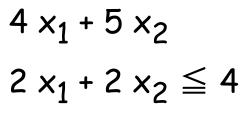
$$3 x_1 + 6 x_2 \le 8$$

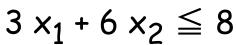
$$x_1 \ge 0, x_2 \ge 0$$



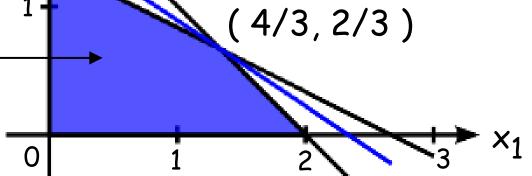
Practice: Solve by drawing

- Optimal solution? maximize $(x_1, x_2) = (4/3, 2/3)$ subject to $2x_1 + 2x_2 \le 4$
- Optimal value? 26/3





$$x_1 \ge 0, x_2 \ge 0$$



Practice: Solve by drawing (Integer programming)

- Optimal solution? $(x_1, x_2) =$
- Optimal value?

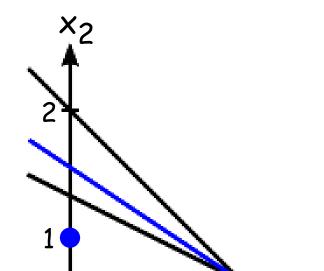
maximize

 $4 x_1 + 5 x_2$ subject to $2x_1 + 2x_2 \le 4$

 $3 x_1 + 6 x_2 \leq 8$

 $x_1 \ge 0, x_2 \ge 0$

 x_1 , x_2 are integers



Feasible set

Practice: Solve by drawing (Integer programming)

- Optimal solution? $(x_1, x_2) = (2, 0)$
- Optimal value?

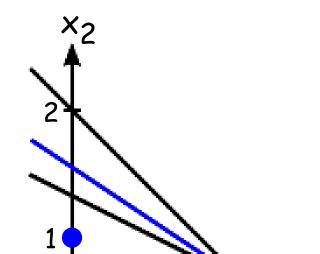
maximize

 $4 x_1 + 5 x_2$ subject to $2x_1 + 2x_2 \le 4$

 $3 x_1 + 6 x_2 \leq 8$

 $x_1 \ge 0, x_2 \ge 0$

 x_1 , x_2 are integers



Feasible set



Practice: Solve by drawing

(a) maximize
$$4 x_1 + 5 x_2$$

subject to $2 x_1 + 2 x_2 \le 4$
 $3 x_1 + 6 x_2 \le 8$
 $x_1 + 4 x_2 \le 4$
 $x_1 \ge 0, x_2 \ge 0$

(b) Change prob. (a) to minimization problem

- (c) maximize $4x_1 + 2x_2$ subject to $x_1 + x_2 \le 8$ $x_1 \le 6$ $x_1 + 2x_2 \ge 2$ $x_1 \ge 0, x_2 \ge 0$
- (d) Change prob.(c)
 to minimize
 problem

Advanced: Solve by drawing (let's challenge)

- Solve the linear programming problem in slide 7
 - 3-dimensional space
 - 4 x_1 + 2 x_2 + $x_3 \le 6$... half space cut by a plane

It is very difficult to solve linear programming problems with 3 (or more) variables by drawing ...

Linear programming Standard form

Standard form

 We can translate all linear programming problems into their standard forms

subject to
$$\sum_{j=1}^{n} a_{ij} x_{j} = b_{i}$$
 (i = 1, 2, ..., m)

$$x_j \ge 0$$
 (j = 1, 2, ..., n)

ただし、
$$b_i \ge 0$$
 (※ Do not forget this)

Ex.) Transformation

■ maximize $z = 2 x_1 - 3 x_2 - 4 x_3$ subject to $2x_1 + x_2 - 3x_3 \le 4$ $x_1 - x_2 + 4 x_3 \ge 5$ $x_1, x_2 \ge 0$, x_3 : free variable

- maximize $z = 2 x_1 3 x_2 4 x_3$ Use "minimize"

 minimize $z = -2 x_1 + 3 x_2 + 4 x_3$

Ex.) Transformation (cont.)

 \blacksquare maximize $z = 2 x_1 - 3 x_2 - 4 x_3$ subject to $2x_1 + x_2 - 3x_3 \le 4$ $x_1 - x_2 + 4 x_3 \ge 5$ $x_1, x_2 \ge 0$, x_3 : free variable

Ex.) Transformation (cont.)

called slack variables ■ maximize $z = 2 x_1 - 3 x_2 - 4 x_3$ subject to $2x_1 + x_2 - 3x_3 \le 4$ $x_1 - x_2 + 4 x_3 \ge 5$ $x_1, x_2 \ge 0$, x_3 : free variable

maximize
$$z = 2 x_1 - 3 x_2 - 4 x_3$$
 $\frac{1}{100} = \frac{1}{100} = \frac{1$

$$2 x_1 + x_2 - 3 x_3 \le 4$$

$$2 x_1 + x_2 - 3 x_3 + s_1 = 4, s_1 \ge 0$$

$$x_1 - x_2 + 4 x_3 \ge 5$$

$$x_1 - x_2 + 4 x_3 \ge 5$$

 $x_1 - x_2 + 4 x_3 - s_2 = 5, s_2 \ge 0$

introduce a slack variable

Both variables are

introduce a surplus variable

Ex.) Transformation (cont Both variables are

maximize
$$z = 2 x_1 - 3 x_2 - 4 x_3$$
 called slack variables in many cases

subject to $2 x_1 + x_2 - 3 x_3 \le 4$
 $x_1 - x_2 + 4 x_3 \ge 5$
 $x_1, x_2 \ge 0, x_3$: free variable

$$2 x_1 + x_2 - 3 x_3 \le 4$$

$$2 x_1 + x_2 - 3 x_3 + s_1 = 4, s_1 \ge 0$$

$$x_1 - x_2 + 4 x_3 \ge 5$$

$$x_1 - x_2 + 4 x_3 - s_2 = 5, s_2 \ge 0$$

$$2x_1 + x_2 - 3x_3' + 3x_3'' + s_1 = 4$$

$$x_1 - x_2 + 4 x_3' - 4 x_3'' - s_2 = 5, x_3', x_3'' \ge 0$$

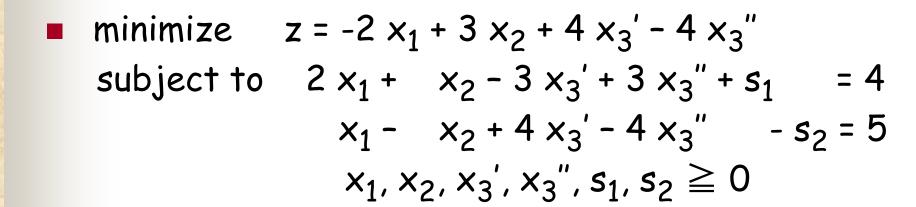
introduce a slack variable

introduce a surplus variable

introduce nonnegative variables

Ex.) Transformation (summary)

maximize $z = 2 x_1 - 3 x_2 - 4 x_3$ subject to $2 x_1 + x_2 - 3 x_3 \le 4$ $x_1 - x_2 + 4 x_3 \ge 5$ $x_1, x_2 \ge 0, x_3$: free variable



practice: Standard form

(a) maximize
$$z = 4 x_1 + 2 x_2$$

subject to $2 x_1 + 2 x_2 \le 4$
 $-3 x_1 - 6 x_2 \le -9$
 $x_1 \ge 0$, x_2 : free variable

(b) maximize
$$z = 3 x_1 + 5 x_2 + 4 x_3$$

subject to $4 x_1 + 2 x_2 + 3 x_3 \le 6$
 $3 x_1 - 4 x_2 + 5 x_3 \le -2$
 $x_1 \ge 0, x_2 \ge 0, x_3$: free variable

Summary

- Formulation of the problems
 - Linear programming problem
 - Integer programming problem
- Solve linear programming problems
 - Solve by drawing
 - It is very difficult to solve linear programming problems with 3 (or more) variables
- Standard form of a linear programming problem
 - Any linear programming problem can be transformed into its standard form