

Large-Scale Knowledge Processing Optimization Techniques (2)

Faculty of Information Science
and Technology, Hokkaido Univ.
Takashi Horiyama

Prev. class + α : Linear Programming Problem

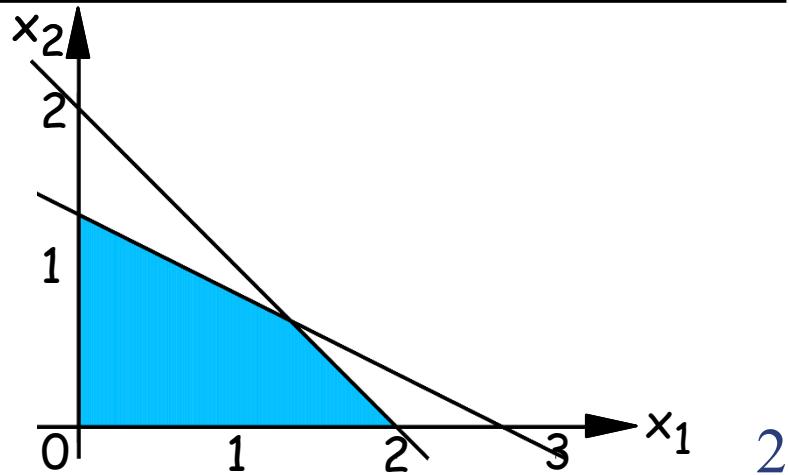
Standard form

- minimize $z = -4x_1 - 5x_2$
subject to $2x_1 + 2x_2 + x_3 = 4$
 $3x_1 + 6x_2 + x_4 = 8$
 $x_1, x_2, x_3, x_4 \geq 0$ Transformation to
its standard form

Intuitive observation :

- By checking the **extreme points** (vertices) of the feasible region, we can find the optimal solution
- How can we find **extreme points** of the feasible region ?
(The standard form gives a good hint)

$$\begin{aligned} & \text{maximize } z = 4x_1 + 5x_2 \\ & \text{subject to } 2x_1 + 2x_2 \leq 4 \\ & \quad 3x_1 + 6x_2 \leq 8 \\ & \quad x_1, x_2 \geq 0 \end{aligned}$$



Ex.) Standard form (Vector representation)

■ minimize $z = -4x_1 - 5x_2$
subject to $2x_1 + 2x_2 + x_3 = 4$
 $3x_1 + 6x_2 + 4x_4 = 8$
 $x_j \geq 0 \ (j = 1, 2, \dots, 4)$

■ minimize $z = (-4 \ -5 \ 0 \ 0) \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$

subject to $\begin{pmatrix} 2 & 2 & 1 & 0 \\ 3 & 6 & 0 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 4 \\ 8 \end{pmatrix} \geq \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$

Standard form (Vector representation)

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & & a_{mn} \end{bmatrix}$$

■ minimize $z = \sum_{j=1}^n c_j x_j$

subject to $\sum_{j=1}^n a_{ij} x_j = b_i \quad (i = 1, 2, \dots, m)$

$$x_j \geq 0 \quad (j = 1, 2, \dots, n)$$

■ minimize $z = c^T x$

$$c^T = (c_1, c_2, \dots, c_n)$$

subject to $A x = b$

$$A = (a_{ij}) \quad m \times n \text{ matrix}$$

$$x \geq 0$$

$$b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} \quad x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

Standard form (Vector representation)

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & & a_{mn} \end{bmatrix}$$

$$\begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix} \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix} \dots \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix}$$

A can be regarded as $(A_1 \ A_2 \ \dots \ A_n)$
(i.e., concatenation of n vertical vectors)

- minimize $z = c^T x$ $c^T = (c_1, c_2, \dots, c_n)$
subject to $A x = b$ $A = (a_{ij})$ $m \times n$ matrix
 $x \geq 0$

$$b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} \quad x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

Constraints in p. 3

Ex.) Basis

- Infinitely many assignments to (x_1, x_2, x_3, x_4) satisfying the 2 conditions

- In case $(x_3, x_4) = (0, 0)$?
- i.e., if we **focus on x_1, x_2**

$\rightarrow (x_1, x_2, x_3, x_4)$ is uniquely obtained

$$\begin{bmatrix} 2 & 2 & 1 & 0 \\ 3 & 6 & 0 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 4 \\ 8 \end{bmatrix}$$

Basic vectors: $\{ \left(\begin{smallmatrix} 2 \\ 3 \end{smallmatrix} \right), \left(\begin{smallmatrix} 2 \\ 6 \end{smallmatrix} \right) \}$

Basic matrix: $\left(\begin{smallmatrix} 2 & 2 \\ 3 & 6 \end{smallmatrix} \right)$

Basic variables: x_1, x_2 , **Nonbasic variables:** x_3, x_4

Basic solution

for basic vectors $\{ \left(\begin{smallmatrix} 2 \\ 3 \end{smallmatrix} \right), \left(\begin{smallmatrix} 2 \\ 6 \end{smallmatrix} \right) \}$: $\hat{x} = (4/3, 2/3, 0, 0)$

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \left(\begin{smallmatrix} 2 & 2 \\ 3 & 6 \end{smallmatrix} \right)^{-1} \begin{pmatrix} 4 \\ 8 \end{pmatrix}$$

$$= \begin{pmatrix} 4/3 \\ 2/3 \end{pmatrix}$$

Diagram showing arrows pointing from the text "Nonbasic variables" to x_3, x_4 and from the text "Basic solution" to the vector \hat{x} .

Constraints in p. 3

Ex.) Basis

- Try another base vector

$$\begin{bmatrix} 2 & 2 & 1 & 0 \\ 3 & 6 & 0 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 4 \\ 8 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 2 & 1 & 0 \\ 3 & 6 & 0 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 4 \\ 8 \end{bmatrix}$$

$$\begin{pmatrix} x_1 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 3 & 0 \end{pmatrix}^{-1} \begin{pmatrix} 4 \\ 8 \end{pmatrix}$$

$$= \begin{pmatrix} 8/3 \\ -4/3 \end{pmatrix}$$

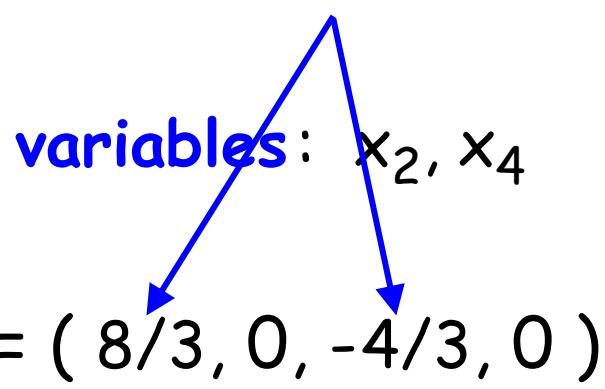
■ **Basic vectors:** $\{ \begin{pmatrix} 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \}$

■ **Basic matrix:** $\begin{pmatrix} 2 & 1 \\ 3 & 0 \end{pmatrix}$

■ **Basic variables:** x_1, x_3 , **Nonbasic variables:** x_2, x_4

■ **Basic solution**

for basic vectors $\{ \begin{pmatrix} 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \}$: $\hat{x} = (8/3, 0, -4/3, 0)$



Supplementary information

- Some basic matrix **may not have the inverse matrix**

$\begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ 6 \end{bmatrix}$ are linear dependent (not independent)

- $A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \dots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$

- Assumption 1: $n \geq m$
- Assumption 2: the rank of A is m
- Assumption 3: optimal solution exists

We can relax these assumptions (later)

Basic vector

Basic matrix

Basic vector

Their combination
is not unique

$$\begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix} \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix} \cdots \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix}$$
$$A = (A_1 \ A_2 \ \cdots \ A_n)$$

- m linear independent vectors in A

$$\text{Basis } \mathcal{B} = \{ A_{i1}, A_{i2}, \dots, A_{im} \}$$

$$\begin{pmatrix} 2 & 2 & 1 & 0 \\ 3 & 6 & 0 & 4 \end{pmatrix}$$

$$\mathcal{B} = \left\{ \begin{pmatrix} 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 2 \\ 6 \end{pmatrix} \right\}$$

Non basic vector

- Other $(n - m)$ vectors

Basic matrix B

- $m \times m$ square matrix with m basic vectors

$$B = (A_{i1} \ A_{i2} \ \cdots \ A_{im})$$

$$\begin{pmatrix} 2 & 2 \\ 3 & 6 \end{pmatrix}$$

Nonbasic matrix N

- $m \times (n - m)$ matrix with $(n - m)$ Nonbasic vectors

Basic variable

$$x_B = (x_1, x_2)$$

Basic solution

$$x_N = (x_3, x_4)$$

$$\hat{x} = (8/3, 2/3, 0, 0)$$

Basic variable

- **m** basic variables $x_{i1}, x_{i2}, \dots, x_{im}$ corresponding to m basic vectors $A_{i1}, A_{i2}, \dots, A_{im}$
- m -dimensional vector $x_B = (x_{i1}, x_{i2}, \dots, x_{im})$

Nonbasic variable

- Other **$(n-m)$** variables
- $(n-m)$ -dimensional vector x_N

Basic solution \hat{x} for basis $\mathcal{B} = \{A_{i1}, A_{i2}, \dots, A_{im}\}$

- $x_j = \begin{cases} 0 & (A_j \notin \mathcal{B}) \\ \text{l-th element of } B^{-1} b & (A_j \in \mathcal{B}, x_j = x_{il}) \end{cases}$

Solution of $Bx = b$

practice: Basic solution

- minimize $z = -4x_1 - 5x_2$
 subject to $2x_1 + 2x_2 + x_3 = 4$
 $3x_1 + 6x_2 + x_4 = 8$
 $x_j \geq 0 \ (j = 1, 2, \dots, 4)$
- $A_1 = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$, $A_2 = \begin{pmatrix} 2 \\ 6 \end{pmatrix}$, $A_3 = \begin{pmatrix} \\ \end{pmatrix}$, $A_4 = \begin{pmatrix} \\ \end{pmatrix}$
- A_1, A_2 independent: $\text{rank}(A_1 A_2) = m$ (determinant $\neq 0$)
- Solve $(A_1 \ A_2) \begin{pmatrix} 4 \\ 8 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$: we have $x_1 = $, $x_2 = $
- Basic solution for A_1, A_2 is $x^T = \begin{pmatrix} \\ \\ \end{pmatrix}$
- All basic elements (elements of basic solution) are non-negative \rightarrow **basic feasible solution**

practice: Basic solution

- From the conditions of the problem in p. 3, we have 4 vectors $A_1 \sim A_4$. We have 6 ways for choosing 2 basic vectors A_i and A_j . For each of them, find basic solutions.
- From each of the above basic solutions, obtain the coordinate (x_1, x_2) . Find such coordinates in the graph of the original optimization problem.

Original
optimization prob.

$$\begin{array}{ll} \text{maximize} & 4x_1 + 5x_2 \\ \text{subject to} & 2x_1 + 2x_2 \leq 4 \\ & 3x_1 + 6x_2 \leq 8 \\ & x_1 \geq 0, x_2 \geq 0 \end{array}$$

Standard form, basic solution

$$A x = b$$

$$x \geq 0$$

$$\begin{matrix} A_1 & A_2 & A_3 & A_4 \\ \left(\begin{matrix} 2 \\ 3 \end{matrix}\right) & \left(\begin{matrix} 2 \\ 6 \end{matrix}\right) & \left(\begin{matrix} 1 \\ 0 \end{matrix}\right) & \left(\begin{matrix} 0 \\ 1 \end{matrix}\right) \end{matrix}$$

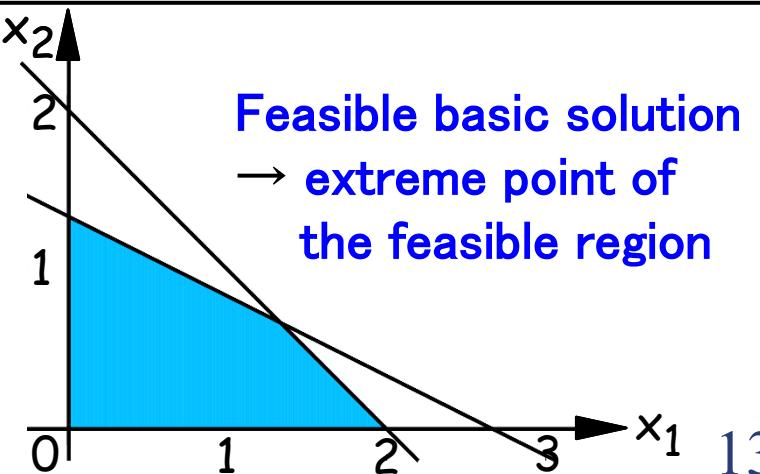
basic solutions for

- A_1, A_2
- A_1, A_3
- A_1, A_4
- A_2, A_3
- A_2, A_4
- A_3, A_4

$\left(\frac{4}{3}, \frac{2}{3}\right)$	$(0, 0)$
$\left(\frac{8}{3}, 0\right)$	$(-\frac{4}{3}, 0)$
$(2, 0)$	$(0, 2)$
$(0, \frac{4}{3})$	$(\frac{4}{3}, 0)$
$(0, 2)$	$(0, -4)$
$(0, 0)$	$(4, 8)$

■ minimize $z = -4x_1 - 5x_2$
 subject to $2x_1 + 2x_2 + x_3 = 4$
 $3x_1 + 6x_2 + x_4 = 8$
 $x_1, x_2, x_3, x_4 \geq 0$ Transformation to
 its standard form

maximize $z = 4x_1 + 5x_2$
 subject to $2x_1 + 2x_2 \leq 4$
 $3x_1 + 6x_2 \leq 8$
 $x_1, x_2 \geq 0$



Degeneration of feasible basic solutions

- Feasible basic solution x is **degenerate**
 - x has more 0's than $n-m$
- Two different basis correspond to the same basic solution x
 - x is degenerate

practice: Degeneration

- For the problems in "Optimization Techniques (1)" slides p. 20 (a), p. 21
 - (1) Transform them into their standard forms
 - (2) Check whether they have degenerate feasible basic solution

Degeneration of feasible basic solutions

■ minimize $z = -4x_1 - 5x_2$
subject to $2x_1 + 2x_2 + x_3 = 4$
 $3x_1 + 6x_2 + x_4 = 8$
 $x_1 + 4x_2 + x_5 = 4$
 $x_1, x_2, x_3, x_4, x_5 \geq 0$

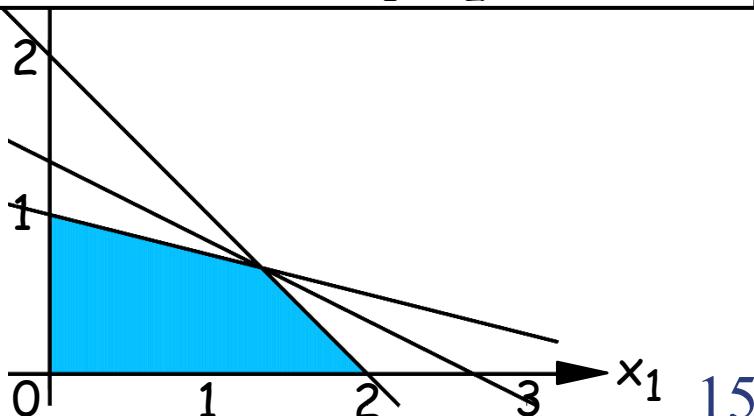
$A_1 \quad A_2 \quad A_3 \quad A_4 \quad A_5$
 $(\frac{2}{3}) \quad (\frac{2}{6}) \quad (\frac{1}{0}) \quad (\frac{0}{1}) \quad (\frac{0}{1})$

basic solutions for

- $A_1, A_2, A_3 \quad (\frac{4}{3}, \frac{2}{3}, 0, 0, 0)$
- $A_1, A_2, A_4 \quad (\frac{4}{3}, \frac{2}{3}, 0, 0, 0)$
- $A_1, A_2, A_5 \quad (\frac{4}{3}, \frac{2}{3}, 0, 0, 0)$

⋮

maximize $z = 4x_1 + 5x_2$
subject to $2x_1 + 2x_2 \leq 4$
 $3x_1 + 6x_2 \leq 8$
 $x_1 + 4x_2 \leq 4$
 $x_1, x_2 \geq 0$

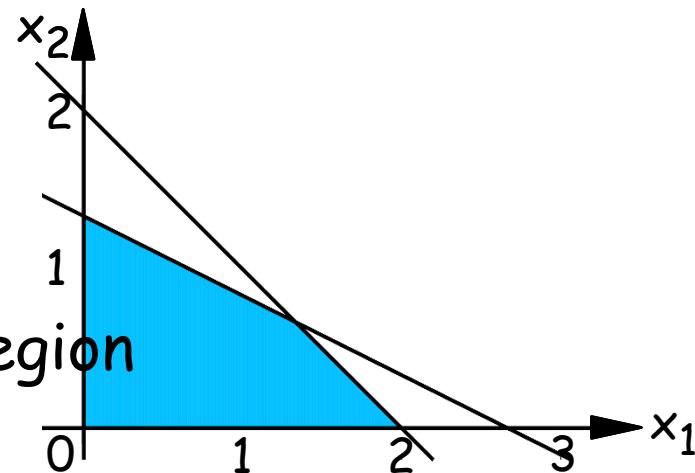


practice: Basic solution

- Enumerate all basic solutions for the problem in p. 15
 - We have 5 basic vectors A_1, A_2, A_3, A_4, A_5
 - Choose any 3 from these 5

Summary (1st half)

- Feasible basic solution
→ extreme point of feasible region
- Basis → basic solution
- We can find the optimal solution by checking **all** basic solutions for **all** basis



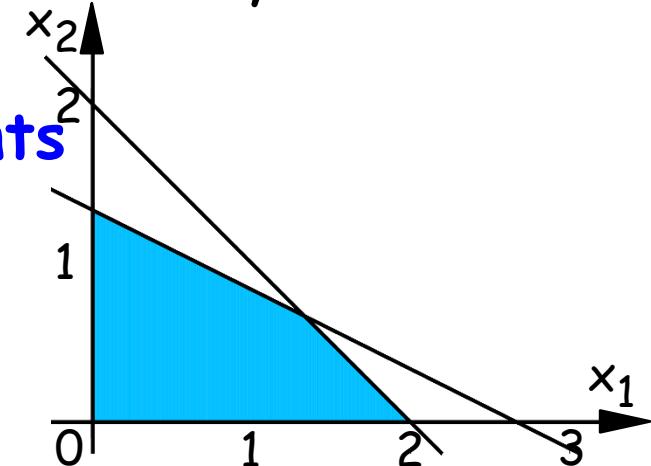
Linear programming

Simplex method (Simplex algorithm)

- Check all basic solutions ?
- Better ways ?
Walk through feasible basic solutions
with improving the objective value

preliminaries: Feasible region, extreme point

- Lemma: Feasible region F is convex
- Definition: $x \in F$ is an **extreme point**
 - The point that cannot be a convex combination of two different points $x', x'' \in F$
- Properties:
 - The number of **extreme point** for any F is **finite**
 - F can be represented as a **convex hull of extreme points**



- S is convex
 - $\forall x', x'' \in S, \forall \alpha (0 \leq \alpha \leq 1)$
 $x' + (1 - \alpha)x'' \in S$
- Convex hull of point set S'
 - Minimum convex region containing S'

Simplex dictionary (Dictionary)

- minimize $z = -2x_1 + x_2 + x_3 - x_4$
subject to $x_1 + 2x_2 - x_3 + x_4 = 0$
 $2x_1 - 2x_2 + 3x_3 + 4x_4 = 9$
 $x_1, x_2, x_3, x_4 \geq 0$
- Basic solution for $A_2 A_3$
 $(0, \frac{9}{4}, \frac{9}{2}, 0)$... feasible solution

■ Dictionary

- Solve the conditions for **basic variables**

Current objective value

■ $z = 27/4 - 19/4 x_1 - 21/4 x_4$

■ $x_2 = 9/4 - 5/4 x_1 - 7/4 x_4$

■ $x_3 = 9/2 - 3/2 x_1 - 5/2 x_4$

+ substitute them in the **objective function**

Basic variables Values in basic solution Nonbasic variables

20

Basis exchange (Pivot operation)

- $z = 27/4 - 19/4 x_1 - 21/4 x_4$
- $x_2 = 9/4 - 5/4 x_1 - 7/4 x_4$
- $x_3 = 9/2 - 3/2 x_1 - 5/2 x_4$
- $x_1 = x_4 = 0$ holds in the current basic solution
- The coefficients of x_1, x_4 in the objective function are $-19/4, -21/4$, respectively
- If we increase x_4 by Δ
 - the objective value decreases: $27/4 - 21/4 \Delta$
 - If x_4 increases by itself (other variables are fixed), the constraints are not satisfied
 - **change basic variables** (x_2, x_3)
with fixing other nonbasic variables ($x_1 = 0$)

Basis exchange (Pivot operation)

- $z = 27/4$ - $21/4 x_4$
- $x_2 = 9/4$ - $7/4 x_4$
- $x_3 = 9/2$ - $5/2 x_4$
- **Fix other nonbasic variables ($x_1 = 0$)**
- Increase x_4 from 0
 - x_2 decreases (when $x_4 = 9/7$, we have $x_2 = 0$)
 - x_3 decreases (when $x_4 = 9/5$, we have $x_3 = 0$)
- Stop at $x_4 = 9/7$ to keep the **feasibility** ($x_i \geq 0$)
 - $x_2 = 0$, i.e., " x_2 becomes a nonbasic variable"
 - x_4 becomes a basic variable

Basis exchange (Pivot operation)

- $z = 27/4 - 19/4 x_1 - 21/4 x_4$
- $x_2 = 9/4 - 5/4 x_1 - 7/4 x_4$
- $x_3 = 9/2 - 3/2 x_1 - 5/2 x_4$

Update a dictionary

- x_2 becomes a nonbasic variable,
 x_4 becomes a basic variable
- Transform eq. $x_2 = \dots$ as eq. $x_4 = \dots$
& Substitute x_4 in other equations

- $z = -9/4 + 19/5 x_1 + 7/5 x_2$
- $x_4 = 9/7 - 5/7 x_1 - 4/7 x_2$
- $x_3 = 9/5 + 6/5 x_1 - 2/5 x_2$

practice: Pivot operation

- Update the following simplex dictionary so that x_2, x_3 are basic variables and x_1, x_4 are nonbasic variables

$$z = -4x_1 - 6x_2$$

$$x_3 = 4 - 2x_1 - 2x_2$$

$$x_4 = 9 - 3x_1 - 6x_2$$

Optimal dictionary

- All coefficients (of nonbasic variables) in the objective function are positive
 - We cannot decrease objective value

Optimal dictionary

Optimal value

- For all feasible solution,
 $x_2, x_4 \geq 0$ implies $z \geq -9/4$
- $x^T = (9/5, 0, 9/5, 0)$ is optimal
with $z = -9/4$

- $z = -9/4 + 19/5 x_2 + 7/5 x_4$
- $x_1 = 9/5 - 4/5 x_2 - 7/5 x_4$
- $x_3 = 9/5 + 6/5 x_2 - 2/5 x_4$

Optimal solution $x^T = (9/5, 0, 9/5, 0)$

Simplex tableau

$$\begin{aligned}
 z &= 27/4 - 19/4 x_1 - 21/4 x_4 \\
 x_2 &= 9/4 - 5/4 x_1 - 7/4 x_4 \\
 x_3 &= 9/2 - 3/2 x_1 - 5/2 x_4
 \end{aligned}$$

Represent a dictionary by a simplex tableau

Current

objective function

Basic variables

	x_1	x_4
z	27/4	- 19/4 - 21/4
x_2	9/4	- 5/4 - 7/4
x_3	9/2	- 3/2 - 5/2

Values in basic solution

Nonbasic variables

Relative cost
coefficients

Rates of change of
the objective value
with respect to the
nonbasic variables

Pivot operation

- Pivot (r, s) : r -th row & s -th column
- Exchange the r -th basic var. & the s -th nonbasic var.
- Ex.: Pivot $(1, 1)$ to the above tableau

- Transform eq. $x_2 = \dots$ as eq. $x_1 = \dots$
& Substitute x_1 in other equations

Pivot out variable
(Variable exiting from the basis)

Pivot in variable
(Variable entering the basis)

Simplex method

	x_1	x_2
z	0	- 4
x_3	4	- 2
x_4	9	- 3

$$\begin{aligned} & \text{minimize} \quad z = -4x_1 - 6x_2 \\ & \text{subject to} \quad 2x_1 + 2x_2 + x_3 = 4 \\ & \quad 3x_1 + 6x_2 + x_4 = 9 \\ & \quad x_1, x_2, x_3, x_4 \geq 0 \end{aligned}$$

	x_1	x_4
z	-9	-1 1
x_3	1	-1 1/3
x_2	3/2	-1/2 -1/6

Pivot (2, 2)

Pivot the 2nd row and 2nd column

z		

Pivot (,)

Summary (2nd half)

- Represent a feasible basic solution
(an extreme point of the feasible region)
by a simplex tableau
- Overview of Simplex method
 - Find a starting point:
Find a feasible basic solution (given in the next class)
 - Pivot operation:
Exchange the r-th basic var. & the s-th nonbasic var.
→ Walk through the extreme points
(until we cannot improve
the objective function)

