

Large-Scale Knowledge Processing Optimization Techniques (3)

Supplementary Material:
The Two-Phase Method

Faculty of Information Science
and Technology, Hokkaido Univ.

Takashi Horiyama

Two-Phase Method

- When solving the original problem directly, we may encounter the following situations:
 - **Infeasible** (no feasible solution)
 - **Unbounded**
 - **Optimal solution**
- Phase I
 - We construct an **artificial linear programming problem** and solve it by the simplex method
 - Determine whether the original prob. is **feasible or infeasible**
 - If feasible, obtain a basic feasible solution of the original prob.
- Phase II
 - Using the feasible solution obtained in Phase I as an **initial solution**, solve the **original problem** by the simplex method (We obtain the optimal solution)

Two-Phase Method (Phase I) (Example)

Original problem (standard form)

$$\begin{aligned} \text{minimize } z &= -x_1 - 5x_2 \\ \text{subject to } &4x_1 - x_2 + 4x_3 = 6 \\ &x_1 + 2x_2 + 2x_3 = 4 \\ &x_1, x_2, x_3 \geq 0 \end{aligned}$$

Initial basic feasible solution ???

Introduce one **artificial variable** for each constraint

Artificial problem

$$\begin{aligned} \text{minimize } w &= x_4 + x_5 \\ \text{subject to } &4x_1 - x_2 + 4x_3 + x_4 = 6 \\ &x_1 + 2x_2 + 2x_3 + x_5 = 4 \\ &x_1, x_2, x_3, x_4, x_5 \geq 0 \end{aligned}$$

Minimize the sum of **artificial variables**
(i.e., we want **all artificial variables** to become **0**)

Initial basic feasible solution

$$(x_1, x_2, x_3, x_4, x_5) = (0, 0, 0, 6, 4)$$

Apply the simplex method

Optimal solution of the artificial problem

$(0, 2/5, 8/5, 0, 0)$ This optimal solution is feasible for the original problem

Two-Phase Method (Phase I)

■ minimize $z = \sum_{j=1}^n c_j x_j$

subject to

$$\sum_{j=1}^n a_{ij} x_j = b_i \quad (i = 1, 2, \dots, m)$$

$$x_j \geq 0 \quad (j = 1, 2, \dots, n)$$

Artificial problem

■ minimize $w = \sum_{i=1}^m$

subject to

$$\sum_{j=1}^n a_{ij} x_j + x_{n+i} = b_i \quad (i = 1, 2, \dots, m)$$
$$x_j \geq 0 \quad (j = 1, 2, \dots, n+m)$$

Introduce one **artificial variable** for each constraint

Minimize the sum of **artificial variables**

The artificial problem **always** has a basic feasible solution $(x_1, x_2, \dots, x_n, x_{n+1}, \dots, x_{n+m}) = (0, 0, \dots, 0, b_1, \dots, b_m)$

Two-Phase Method (Phase I)

- Optimal value w^* of the artificial problem
- **Case 1:** $w^* > 0$
 - Artificial variables cannot be reduced to 0
 - The original problem is **infeasible**
- **Case 2:** $w^* = 0$,
 - no artificial variable is basic
 - All artificial variables are 0
 - The optimal solution of Phase I corresponds to a **basic feasible solution** of the original problem
 - An initial basic feasible solution of Phase II is obtained
- **Case 3:** $w^* = 0$,
 - but some artificial variable remain basic
 - Consult the final dictionary of Phase I

Two-Phase Method (Phase II) (Example)

■ Original problem (standard form)

mimimize $z = -x_1 - 5x_2$
 subject to $4x_1 - x_2 + 4x_3 = 6$
 $x_1 + 2x_2 + 2x_3 = 4$
 $x_1, x_2, x_3 \geq 0$

Initial basic feasible solution

	x_1	
z	-2	-3
x_3	$8/5$	$-9/10$
x_2	$2/5$	$2/5$

■ Artificial problem

mimimize $w = x_4 + x_5$
 subject to $4x_1 - x_2 + 4x_3 + x_4 = 6$
 $x_1 + 2x_2 + 2x_3 + x_5 = 4$
 $x_1, x_2, x_3, x_4, x_5 \geq 0$

↑

- Remove all artificial variables
- Restore the original objective function z

Optimal solution of the artificial problem

	x_1	x_5	x_4	
w	0	0	1	
x_3	$8/5$	$-9/10$	$-1/10$	$-1/5$
x_2	$2/5$	$2/5$	$-2/5$	$1/5$

Phase I, Case 3 (Example)

mimimize $w = x_4 + x_5$

subject to

$$-x_2 - 2x_3 + x_4 = 0$$

$$x_1 + 3x_2 + 4x_3 + x_5 = 5$$

$$x_1, x_2, x_3, x_4, x_5 \geq 0$$

Optimal solution of the artificial problem

	x_2	x_3	x_5
w	0	1	2
x_4	0	1	2
x_1	5	-3	-4

Unfortunately, artificial variable
 x_4 is a basic variable

- Make a variable of the original problem a basic variable

Ex.) pivot on x_2 to remove x_4 from the basis

$$x_4 = 0 + x_2 + 2x_3$$

$$x_2 = 0 + x_4 - 2x_3$$

	x_4	x_3	x_5
w	0	1	0
x_2	0	1	-2
x_1	5	-3	2

Phase I, Case 3

Dictionary

Unfortunately, an artificial variable remain basic

■ Artificial variable: $x_i = b_i + a_{i,j_1} x_{j_1} + a_{i,j_2} x_{j_2} + \dots + a_{i,j_n} x_{j_n}$

Case 3-1:

Make a variable of the original problem a basic variable

■ If there exists a variable x_{j_k} from the original problem such that $a_{i,j_k} \neq 0$, then pivot on x_{j_k} to remove x_i from the basis

■ $x_{j_k} = b_i / a_{i,j_k} + a_{i,j_1} / a_{i,j_k} x_{j_1} + \dots$

Case 3-2:

x_i depends only on artificial variables

■ If $a_{i,j_k} = 0$ holds for all original variables x_{j_k} , then x_i depend only on artificial variables
 → We can **remove** the constraint for x_i

- If Assumption 2 ($\text{rank}(A) = m$) does not hold, some constraint can be eliminated by Case 3-2
- If Assumption 1 ($n \geq m$) does not hold (i.e., $n < m$), then we have $\text{rank}(A) < m$, and at least $m - n$ constraints can be eliminated

Practice: Two-Phase Method

a. The following is the standard form of the problem in "Optimization Technique (3)" slide p. 10. Solve the problem by the two-phase method. (First, introduce an artificial variable x_4)

$$\begin{aligned} & \text{minimize } z = -x_1 - 2x_2 \\ & \text{subject to } -x_1 - x_2 - x_3 = 1 \\ & \quad x_1, x_2, x_3 \geq 0 \end{aligned}$$

Practice:

- Transform the following problems into their standard forms, and solve them by the two-phase method
 - b. "Optimization Technique (3)" slide p. 9
 - c. "Optimization Technique (3)" slide p. 11

Practice: Two-Phase Method

(a) Solve the following problem by the two-phase method
(First, introduce artificial variables)

$$\begin{aligned} \text{minimize } z &= -x_1 - 2x_2 \\ \text{subject to } & -x_1 - x_2 = 2 \\ & -2x_1 - x_2 = 8 \\ & x_1, x_2 \geq 0 \end{aligned}$$

(b) Transform the following problem into its standard form, and solve it by the two-phase method

$$\begin{aligned} \text{maximize } z &= -3x_1 - x_2 \\ \text{subject to } & x_1 + x_2 \leq 4 \\ & x_1 + 2x_2 = 5 \\ & x_1, x_2 \geq 0 \end{aligned}$$

Practice: Two-Phase Method

- Transform the following problems into their standard form, and solve them by the two-phase method

(a)

$$\begin{aligned} \text{maximize } z = & \quad x_1 + 4x_2 \\ \text{subject to } & \quad 2x_1 + x_2 \leq 8 \\ & \quad x_1 + 2x_2 \leq 10 \\ & \quad x_1, x_2 \geq 0 \end{aligned}$$

(b)

$$\begin{aligned} \text{maximize } z = & \quad x_1 + 4x_2 \\ \text{subject to } & \quad 2x_1 + x_2 \geq 8 \\ & \quad x_1 + 2x_2 \geq 10 \\ & \quad x_1, x_2 \geq 0 \end{aligned}$$

Summary

maximize $z = -3x_1 - x_2$
 subject to $x_1 + x_2 \leq 4$
 $x_1 + 2x_2 = 5$
 $x_1, x_2 \geq 0$

	x_1	x_2	x_3
w	9	-2	-3
x_4	4	-1	-1
x_5	5	-1	-2

Solve the **artificial problem**
 by the simplex method

↓ Transform into its **standard form**

minimize $z = 3x_1 + x_2$
 subject to $x_1 + x_2 + x_3 = 4$
 $x_1 + 2x_2 = 5$
 $x_1, x_2, x_3 \geq 0$

	x_1	x_5	x_4
w	0	0	1
x_3	$3/2$	$-1/2$	$1/2$
x_2	$5/2$	$-1/2$	$-1/2$

Artificial variables are 0s

↓ Two-phase method Step 1: **artificial prob.**

minimize $w = x_4 + x_5$
 subject to $x_1 + x_2 + x_3 + x_4 = 4$
 $x_1 + 2x_2 + x_5 = 5$
 $x_1, x_2, x_3, x_4, x_5 \geq 0$

↓ Step 2: Initial basic feasible solution

	x_1
z	$5/2$
x_3	$3/2$
x_2	$5/2$