

Large-Scale Knowledge Processing

Optimization Techniques (3)

Faculty of Information Science
and Technology, Hokkaido Univ.

Takashi Horiyama

Walk through the extreme points from an initial feasible basic solution

Prev. class + α : Simplex method

Initial feasible basic solution

	x_1	x_2
z	0	-4
x_3	4	-2
x_4	8	-3
x_5	4	-1

	x_1	x_5
z	-5	-11/4
x_3	2	-3/2
x_4	2	-3/2
x_2	1	-1/4

	x_3	x_5
z	-26/3	11/6
x_1	4/3	-2/3
x_4	0	1
x_2	2/3	1/6

$$\begin{aligned}
 & \text{minimize } z = -4x_1 - 5x_2 \\
 & \text{subject to } 2x_1 + 2x_2 + x_3 = 4 \\
 & \quad 3x_1 + 6x_2 + x_4 = 8 \\
 & \quad x_1 + 4x_2 + x_5 = 4 \\
 & \quad x_1, x_2, x_3, x_4, x_5 \geq 0
 \end{aligned}$$

Pivot
(3, 2)

$$\begin{aligned}
 z &= -4x_1 - 5x_2 \\
 x_3 &= -2x_1 - 2x_2 + 4 \\
 x_4 &= -3x_1 - 6x_2 + 8 \\
 x_5 &= -x_1 - 4x_2 + 4
 \end{aligned}$$

Increase x_2 from 0
(Fix other nonbasic var. $x_1 = 0$)

Pivot
(1, 1)

x_3 decrease, $x_3 \geq 0$ if $x_2 \leq 2$
 x_4 decrease, $x_4 \geq 0$ if $x_2 \leq 4/3$
 x_5 decrease, $x_5 \geq 0$ if $x_2 \leq 1$

$$x_2 = -1/4x_1 - 1/4x_5 + 1$$

Initial feasible basic solution ?

- General way will be given later
- Easy case:

$$\begin{array}{ll}\text{maximize} & z = 4x_1 + 6x_2 \\ \text{subject to} & 2x_1 + 2x_2 \leq 4 \\ & 3x_1 + 6x_2 \leq 9 \\ & x_1, x_2 \geq 0\end{array}$$

$$\begin{array}{ll}\text{minimize} & z = -4x_1 - 6x_2 \\ \text{subject to} & 2x_1 + 2x_2 + x_3 = 4 \\ & 3x_1 + 6x_2 + x_4 = 9 \\ & x_1, x_2, x_3, x_4 \geq 0\end{array}$$

Transformation to its standard form

- Basic vars.: x_3, x_4
 - $z = -4x_1 - 6x_2$
 - $x_3 = 4 - 2x_1 - 2x_2$
 - $x_4 = 9 - 3x_1 - 6x_2$

Choice of pivot ?

- One of the typical ways:
select variable x_j whose coefficient c_j is $c_j < 0$
and $|c_j|$ is the largest

Tips: Pivot operation

just update the simplex tableau

	x_1	x_2
z	0	- 4
x_3	4	- 2
x_4	9	- 3

	x_1	x_4
z		
x_3		
x_2	$3/2$	$- 1/2$

$9 / -(-6)$ $1 / (-6)$

Ex.: Pivot (2, 2)

Exchange the var. in the 2nd row and the var. in the 2nd column

2nd row

$$x_4 = b_4 + a_1 x_1 + \underline{a_2 x_2}$$

$$x_2 = b_4 / (-a_2) + a_1 / (-a_2) x_1 + 1/a_2 x_4$$

Divide all elements in the 2nd row by $-a_2$, but $1/a_2$ in the 2nd column

Tips: Pivot operation

just update the simplex tableau

	x_1	x_2
z	0	-4
x_3	4	-2
x_4	9	-3

	x_1	x_4
z		
x_3		
x_2	(3/2)	-1/2

	x_1	x_4
z		
x_3	1	-1
x_2	3/2	-1/2

Ex.: Pivot (2, 2)

Exchange the var. in the 2nd row and the var. in the 2nd column

Other rows

$$x_3 = b_3 + a_1 x_1 + \underline{a_2 x_2}$$

$$x_2 = b'_2 + a'_1 x_1 + a'_4 x_4$$

$$(Eq. on x_2) \times a_2 + (Eq. on x_3)$$

i.e., i-th column becomes $a_i; a_2 + a'_i$

Notice: 2nd column: $(Eq. x_2) \times a_2$

$$(-1/6)(-2)$$

Practice: Simplex method

Solve the following linear programming problems by simplex method

- a. "Optimization Techniques (2)" slide p. 24
- b. "Optimization Techniques (2)" slide p. 13
- c. "Optimization Techniques (2)" slide p. 15
- d. "Optimization Techniques (1)" slide p. 7

Linear programming

Simplex method

- Can we solve all linear programming problem?

Situation 1: Feasible region is unbounded

Initial feasible basic solution

	x_1	x_2
z	0	-1
x_3	1	1

Original problem

$$\begin{aligned} & \text{minimize } z = -x_1 - 2x_2 \\ & \text{subject to} \\ & \quad x_1 + x_2 \geq -1 \\ & \quad x_1, x_2 \geq 0 \end{aligned}$$

Standard form

$$\begin{aligned} & -x_1 - x_2 + x_3 = 1 \\ & x_1, x_2, x_3 \geq 0 \end{aligned}$$

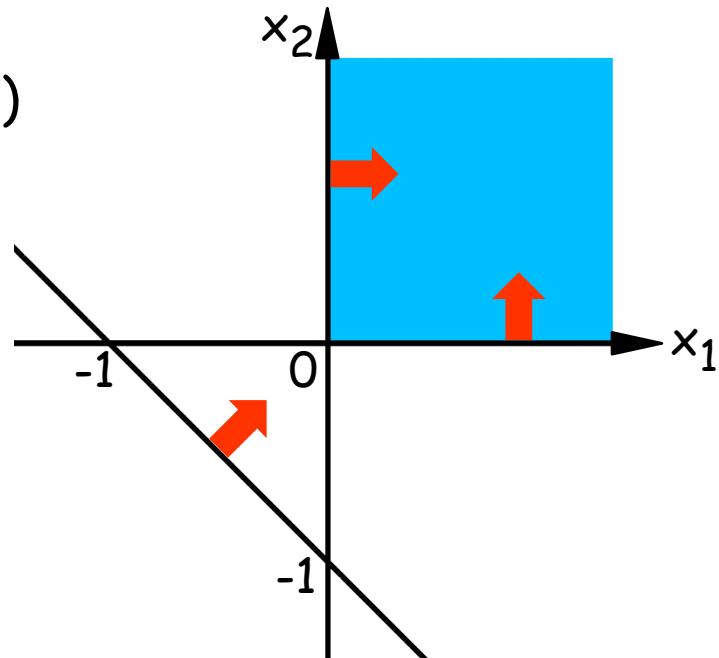
Increase x_2 from 0

(Fix other nonbasic variables as $x_1 = 0$)

x_3 increases, always satisfies $x_3 \geq 0$

→ Objective value z decreases

Feasible region is **unbounded**



Situation 2: Infeasible (no feasible solutions)

Initial feasible basic solution

	x_1	x_2
x_3	0	-1
	-1	-2
	-1	-1

Original problem

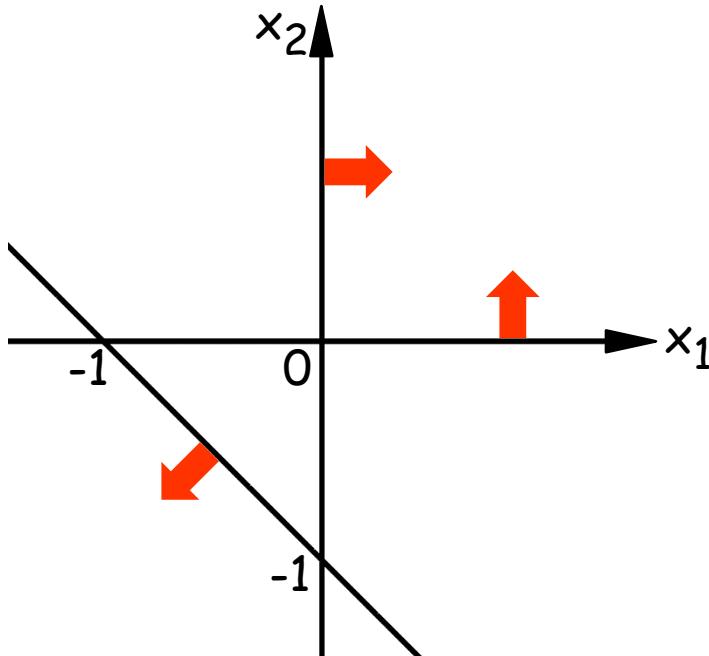
$$\begin{aligned} & \text{minimize } z = -x_1 - 2x_2 \\ & \text{subject to} \quad x_1 + x_2 \leq -1 \\ & \quad x_1, x_2 \geq 0 \end{aligned}$$

Standard form

$$\begin{aligned} & -x_1 - x_2 - x_3 = 1 \\ & x_1, x_2, x_3 \geq 0 \end{aligned}$$

Not a feasible basic solution

How to decide the problem is infeasible ???



Situation 3: Initial feasible basic solution

Initial feasible basic solution

	x_1	x_2
z	0	-1 -2
x_3	-1	1 1

Original problem

$$\begin{aligned} & \text{minimize } z = -x_1 - 2x_2 \\ & \text{subject to } x_1 + x_2 \geq 1 \\ & \quad x_1, x_2 \geq 0 \end{aligned}$$

Standard form

$$\begin{aligned} & x_1 + x_2 - x_3 = 1 \\ & x_1, x_2, x_3 \geq 0 \end{aligned}$$

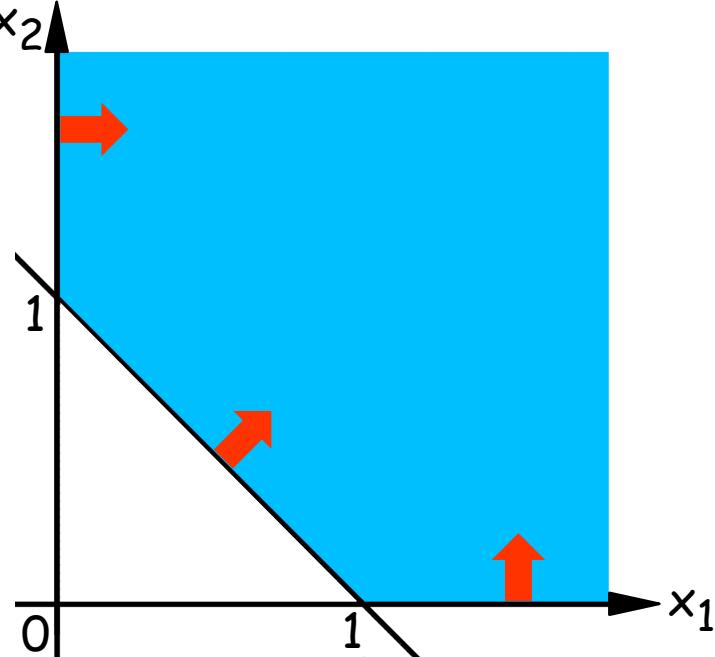
Not a feasible basic solution

(The right fig. says (0, 0) is not a feasible solution, but we have feasible region)

	x_1	x_3
z	0	1 -2
x_2	1	-1 1

(0, 1) is a feasible basic solution

How to find an initial feasible basic solution ???



Two-phase simplex method

Original problem (in standard form)

$$\begin{aligned} \text{minimize } z &= -x_1 - 5x_2 \\ \text{subject to } &4x_1 - x_2 + 4x_3 = 6 \\ &x_1 + 2x_2 + 2x_3 = 4 \\ &x_1, x_2, x_3 \geq 0 \end{aligned}$$

How to find an initial feasible basic solution ???

Artificial problem

$$\begin{aligned} \text{minimize } w &= x_4 + x_5 \\ \text{subject to } &4x_1 - x_2 + 4x_3 + x_4 = 6 \\ &x_1 + 2x_2 + 2x_3 + x_5 = 4 \\ &x_1, x_2, x_3, x_4, x_5 \geq 0 \end{aligned}$$

Introduce an **artificial variable** for each eq.

Minimize the sum of the **artificial vars.** (so that **all artificial vars.** are **0s.**)

Initial feasible basic solution

$$\begin{aligned} (x_1, x_2, x_3, x_4, x_5) \\ = (0, 0, 0, 6, 4) \end{aligned}$$

Optimal solution of the artificial problem

Phase I: apply simplex method to the artificial problem

$$(0, 2/5, 8/5, 0, 0)$$

This solution satisfies the constraints of the original prob.

= This is the initial feasible basic solution for the original prob.

Phase II: apply simplex method to the original prob.

Formulation of linear programming problems (additional techniques)

max{ } function

- Minimize the maximum of two or more objective functions
 - $\text{minimize } \max\{ f(x), g(x), h(x) \}$

→ Introduce a new variable z

$\text{minimize } z$

subject to $f(x) \leq z, g(x) \leq z, h(x) \leq z$

Practice:

- $\text{minimize } x_1 + |x_2|$

max{ } function

- Minimize the maximum of two or more objective functions
 - $\text{minimize } \max\{ f(x), g(x), h(x) \}$

→ Introduce a new variable z

$\text{minimize } z$

subject to $f(x) \leq z, g(x) \leq z, h(x) \leq z$

Practice:

- $\text{minimize } x_1 + |x_2|$

→ $\text{minimize } x_1 + x_2'$
subject to $x_2 \leq x_2', -x_2 \leq x_2'$

$$|x_2| = \max\{ x_2, -x_2 \}$$

Practice: Constraints

(Mixed integer
programming prob.)

- We have 2 variables x and y , where $x = 0, 1$, and y is a real number with $y \geq 0$. Show constraint inequalities for each of the following constraints

1. $y \geq 30$ when $x = 1$
2. $y = 0$ when $x = 0$
3. $y \leq 10$ when $x = 0$
4. $y \leq 10$ when $x = 0$, and $y \geq 30$ when $x = 1$
5. $y \leq 10$ when $x = 0$, and $y \geq 30$ when $x = 1$

Constraints (Mixed integer programming prob.)

1. $y \geq 30$ when $x = 1$

- $y \geq 30x$

i.e., $-30x + y \geq 0$

- When $x = 0$, this inequality says $y \geq 0$
(thus, we have no constraint in this case)
- When $x = 1$, we add constraint $y \geq 30$

Constraints (Mixed integer programming prob.)

2. $y = 0$ when $x = 0$

- $y \leq Mx$ (M is a sufficiently large constant)
i.e., $-Mx + y \leq 0$
- When $x = 0$, we have $y \leq 0$.
As we have $y \geq 0$, we have constraint $y = 0$

3. $y \leq 10$ when $x = 0$

- $-Mx + y \leq 10$ (M is a sufficiently large constant)

Constraints (Mixed integer programming prob.)

4. $y \leq 10$ when $x = 0$, $y \geq 30$ when $x = 1$
 - $-Mx + y \leq 10$, (M is a sufficiently large constant)
 - $-30x + y \geq 0$
 - From the above constraints 1 and 3
5. $y \leq 10$ when $x = 0$, $y \leq 30$ when $x = 1$
 - $y \leq 10(1 - x) + 30x$
i.e., $-20x + y \leq 10$

Practice: Formulation

We are given n points $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ in the plane. Each point is colored in red or blue.

1. We'd like to obtain a parabola that is convex at the bottom, such that **all red points** are **above** the parabola and **all blue points** are **below** the parabola. Formulate the problem of **finding the equation of such a parabola** (if it exists), as a linear programming problem.
2. We'd like to obtain a circle such that **all red points** are **inside the circle** (including the boundary) and **all blue points** are **outside the circle** (including the boundary) Formulate the problem of **determining** whether such a **circle exists** or not, as a linear programming problem.

Formulation (1)

- Without loss of generality, we have k red points $(x_1, y_1), \dots, (x_k, y_k)$, and $n - k$ blue points $(x_{k+1}, y_{k+1}), \dots, (x_n, y_n)$
- Let $y = a x^2 + b x + c$ denote the parabola
- Formulation is as follows:
 - minimize 0
 - subject to

Determine whether we have a feasible solution (a, b, c) satisfying the constraints

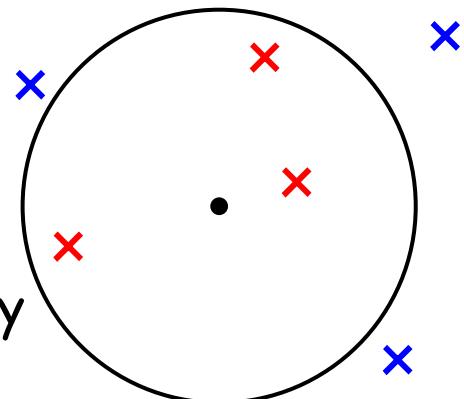
Red points: $x_i^2 a + x_i b + c \geq y_i \quad (i = 1, 2, \dots, k)$

Blue points: $x_i^2 a + x_i b + c \leq y_i \quad (i = k+1, k+2, \dots, n)$

$a > 0, b, c$: free variables

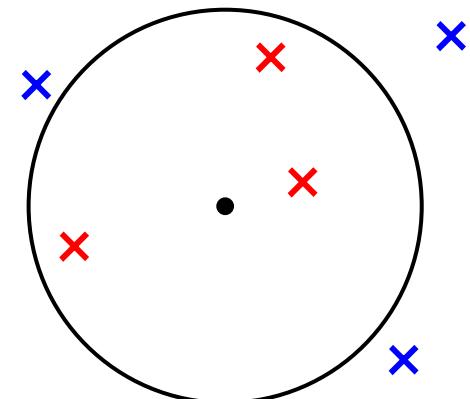
Formulation (2)

- Without loss of generality, we have k red points $(x_1, y_1), \dots, (x_k, y_k)$, and $n - k$ blue points $(x_{k+1}, y_{k+1}), \dots, (x_n, y_n)$
- Let (x, y) and r denote the center and the radius of the circle, respectively
- Constraints for each point:
Red points: $(x_i - x)^2 + (y_i - y)^2 \leq r^2 \quad (i = 1, 2, \dots, k)$
Blue points: $(x_i - x)^2 + (y_i - y)^2 \geq r^2 \quad (i = k+1, k+2, \dots, n)$
- As we have x^2, y^2, r^2 in the constraints, we cannot formulate the problem as a linear programming problem ... (is that right ?)



Formulation (2)

- Let point $C(x, y)$ be the center of the circle
- We try to denote the constraints in another way
- Any pair of **red point $P_i(x_i, y_i)$** and **blue point $P_j(x_j, y_j)$** satisfies **distance $CP_i \leq$ distance CP_j**
- That is, for any $i = 1, 2, \dots, k$ and $j = k+1, k+2, \dots, n$, we have a constraint
$$(x_i - x)^2 + (y_i - y)^2 \leq (x_j - x)^2 + (y_j - y)^2$$
- From this inequality, we have a constraint
$$2(x_i - x)x + 2(y_i - y)y \geq x_i^2 + y_i^2 - x_j^2 - y_j^2$$



Formulation (2)

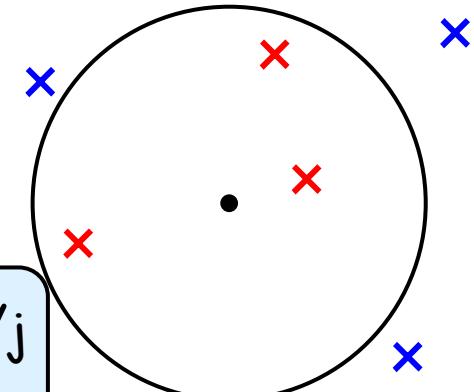
- Formulated linear programming problem is as follows:

Determine whether we have a feasible solution (a, b, c) satisfying the constraints

- minimize 0
- subject to

Note that x_i, y_i, x_j, y_j are constants

$$2(x_i - x_j)x + 2(y_i - y_j)y \geq x_i^2 + y_i^2 - x_j^2 - y_j^2$$
$$(i = 1, 2, \dots, k; j = k+1, k+2, \dots, n)$$



- By solving this linear programming problem, we can obtain the center (x, y) of the circle. The radius is not obtained.

Summary

- Simplex method
 - How to find an initial feasible basic solution ?
 - How to select a pivot ?
- Situations we need to consider
 - Two-phase simplex method
- Formulation of linear programming problems