Large-scale Knowledge Processing Lecture 4

Kazuhisa Seto

Today's Lecture

Study the foundation on theory of computation

- \triangleright Reduction
- Ø NP-complete Problems and Polynomial-time Reducitons
- Ø Polynomial-time Reduction from CNF-SAT to 3SAT
- Ø Polynomial-time Reduction from 3SAT to Vertex Cover Problem

Reduction

The definition of reduction

A reduction is a map from an instance of problem A to an instance of problem B such that an instance of problem A outputs Yes if and only if a mapping instance of problem B also outputs Yes.

Reduction is useful

When one wants to solve a decision problem A, by using reduction, we can get the answer of A by solving the problem B.

An example of reduction

We consider the following two problems.

- Ø Independent Set Problem:IS
- Ø Vertex Cover Problem:VC

Independent Set Vertex Cover

Independent Set Problem (IS)

Input: A Graph G and a positive integer k

Ask: Is there an independent set of size k in G

Independent Set: A set I such that any two elements in I are not adjacent in G .

Note that the empty set $Ø$ is an independent set.

Orange circles are independent set | Not independent set

Vertex Cover (VC)

Input: A graph G and a positive integer k

Ask: Is there a vertex cover of size k in G ?

Vertex Cover: A set of vertices C such that for every edge e , at least one endpoint of e in C .

The relation between IS and VC

Orange Circles (IS) + Blue Circles (VC) = All Vertices

The relation between IS and VC

There exists an independent set of size k in G

There exists a vertex cover of size n-k in G

Let V be a vertex set of G. Let S be an independent set in G and T be a vertex set V-S

- \Rightarrow Since S is an IS, then there is no edge between any pair of vertices in S.
- \Rightarrow Every vertex in S has an edge to some vertex in T.
- \Rightarrow T must be a vertex cover. (See a figure in next slide)

The relation between IS and VC

There exists an independent set of size k in G

There exists a vertex cover of size n-k in G

S Independent set Vertex cover T

Input: A Graph G and a positive integer k

Ask (IS): Is there an independent set of size k in G Ask (VC): Is there a vertex cover of size $n - k$ in G?

If IS outputs Yes、then VC outputs Yes.

- \Rightarrow Does it hold that if IS outputs No, then VC outputs No?
- We consider a contraposition.
- Does is hold that if VC outputs Yes, then IS outputs Yes ?
- \Rightarrow It holds. (Consider why it holds by yourself)

There exists the following map from an instance of IS to an instance of VC. This is a reduction.

- \triangleright If there exists an independent set of size k in G, then there exist a vertex cover of size n-k in G.
- \triangleright If there exists no independent set of size k in G, then there exists no vertex cover of size n-k in G.

NP-complete problems and polyonomial-time reductions

Class P and Class NP

- Class P (Polynomial time)
- \triangleright A set of decision problems solved by deterministic TMs in polynomial time.

- Class NP (Nondeterministic Polynomial time)
- \triangleright A set of decision problems solved by non-deterministic TMs in polynomial time.
- \triangleright A set of decision problems such that when a given x and a witness w, deterministic TMs decide that x is yes instances in polynomial time. 15

NP-complete problem (NPC)

- The definition of NP-complete Problem
- A decision problem L is NP-complete if
- \triangleright L is in NP.
- \triangleright Any problem in NP can be reducible to L in deterministic polynomial time. (NP-hard)

Polynomial-time Reduction: A reduction from an instance of problem A to an instance of problem B by determinist TMs in polynomial time .

The inclusion relation between P, NP, **NPC and NP-hard**

NP-Complete Problem

Intuitively, NPC is the most difficult problems in NP.

- \Rightarrow If a problem in NPC can be solved, then all problems in NP can be solved.
- \Rightarrow If a NP-complete problem can be in deterministic polynomial time, then $P = NP$.
- The following problems are typical NP-complete problems.
- Ø Satisfiability Problem, Independent Set Problem, Vertex Cover Problem, Hamiltonian Cycle Problem, $etc...$ 18

Satisfiability Problem (SAT)

- Input: Boolean formula ϕ
- Ask: Is there exists an assignment to the input variables such as ϕ =1?
- Satisfying assignment α : an assignment α such as ϕ =1 We say α satisfies ϕ when α is a satisfying assignment. If ϕ has some satisfying assignment, we say ϕ is satisfiable.
- CNF-SAT: The satisfiability problem for CNF. CNF: $(x_1 \vee \overline{x}_2)(x_1 \vee x_2 \vee x_3)(\overline{x}_1 \vee x_2 \vee x_3)(\overline{x}_1 \vee \overline{x}_2)$ #) ¹⁹

SAT is NP-complete

SAT is the first problem shown that it is NP-complete.

Cook-Levin's Theorem [Cook '71, Levin '73]

SAT (CNF-SAT) is NP-complete.

If a problem has a reduction from SAT, it is also NPcomplete problem.

From the next slide, We see some reductions from SAT.

Polynomial Reduction from CNF-SAT to 3SAT

3 Satisfiability (3 SAT)

kSAT

Input: kCNF ϕ

Ask: Is there exists an assignment to the input variables such as $\phi = 1$?

kCNF: CNF and each clause has at most k literals 3CNF: $(x_1 \vee \overline{x}_2)(x_1 \vee x_2 \vee x_3)(\overline{x}_1 \vee x_2 \vee x_3)(\overline{x}_1 \vee \overline{x}_3)$

3SAT when k=3.

First, we show a reduction from 4SAT to 3SAT.

We consider the following clause with 4 literals.

$$
C = x_1 \vee \overline{x}_2 \vee \overline{x}_3 \vee x_4
$$

We introduce a new variable z to construct two new clauses C_1 and C_2 .

$$
C_1 = x_1 \vee \overline{x}_2 \vee z \qquad C_2 = \overline{x}_3 \vee x_4 \vee \overline{z}
$$

Next, we show the following.

 \triangleright If C is satisfiable by some assignment α , then α satisfies both C_1 and C_2 .

$$
C = x_1 \vee \overline{x}_2 \vee \overline{x}_3 \vee x_4 \quad C_1 = x_1 \vee \overline{x}_2 \vee z \quad C_2 = \overline{x}_3 \vee x_4 \vee \overline{z}
$$

If α set $x_1 = 1$ or $\bar{x}_2 = 1$, then by setting $z = 0$, both C_1 and C_2 are satisfiable.

If α set $\bar{x}_3 = 1$ or $x_4 = 1$, then by setting $z = 1$, both C_1 and C_2 are satisfiable

Thus, we can replace C by C_1 and C_2 .

For all clauses with 4 literals, we do the similar replacements, we can convert 4CNF ϕ to 3CNF ϕ '. If ϕ is satisfiable, then ϕ' is also satisfiable.

But, is it ture that if ϕ is not satisfiable, then ϕ' is also not satisfiable.

- \triangleright We consider the contraposition.
	- T is satisfiable, ϕ is also satisfiable.

See the previous example. We show the following. If both C_1 and C_2 are satisfiable, then C is also satifiable.

 $C_1 = x_1 \vee \bar{x}_2 \vee z \qquad C_2 = \bar{x}_3 \vee x_4 \vee \bar{z} \qquad C = x_1 \vee \bar{x}_2 \vee \bar{x}_3 \vee x_4$

If we set $z = 0$, we must set $x_1 = 1$ or $\bar{x}_2 = 1$ to satisfy C_1 . If we set $z = 1$, we must set $\overline{x_3} = 1$ or $x_4 = 1$ to satisfy C_2 . Bothe case, C is satisfiable.

This holds all clauses, thus if ϕ is not satisfiable, then ϕ' is also not satisfiable.

This is a polynomial-time reduction

This reduction is done in polynomial time.

For an input 4CNF ϕ , n denotes the number of variables in ϕ and m denotes the number of clauses in ϕ .

- \triangleright One replacement is done in a constant time (=O(1)) because the number of each clause is 4.
- \triangleright The number of clauses is m, thus the total time of replacements is done in O(m) time.

Input size is n+m, thus this reduction is done in polynomial

time because O(m) is polynomial of n+m.

The number of variables (clauses) in ϕ' is at most n+m (2m)

Almost same as the reduction from 4SAT to 3SAT. We consider the following clause with k literals.

$$
C = x_1 \vee x_2 \vee x_3 \vee x_4 \vee \dots \vee x_{k-1} \vee x_k
$$

We introduce a new variable $z_1, z_2, ..., z_{k-3}$ to replace C by the following C' .

 $C' = (x_1 \vee x_2 \vee z_1)(\bar{z}_1 \vee x_3 \vee z_2)(\bar{z}_2 \vee x_4 \vee z_3) \cdots (\bar{z}_{k-3} \vee x_{k-1} \vee x_k)$

By this replacement, kSAT is reducible to 3SAT.

This is a polynomial-time reduction

This reduction is done in polynomial time.

For an input kCNF ϕ , n denotes the number of variables in ϕ and m denotes the number of clauses in ϕ .

- \triangleright One replacement is done in O(k) time because the number of each clause is k.
- \triangleright The number of clauses is m, thus the total time of replacements is done in O(km) time.

Input size is n+m, thus this reduction is done in polynomial

time because O(km) is polynomial of n+m.

The number of variables (clauses) in ϕ' is at most n+m(k-3)

 $((k-2)m)$. 29

CNF-SAT is also kSAT, but k may be n.

However, a reduction is the same as that of kSAT from 3SAT.

Thus, time complexity of this reduction is O(nm) because the previous reduction takes $O(km)$ time and $k=n$. It is polynomial time because O(mn) is polynomial of n+m. Because CNF-SAT is NP-complete and the reduction is polynomial time, thus 3SAT is also NP-complete.

Exercise 1

Reduce the following instance of 4SAT to an instance of 3SAT by the reduction explained in the previous slides.

 $\phi = (x_1 \vee \bar{x}_2 \vee x_3 \vee x_4)(\bar{x}_1 \vee x_2 \vee \bar{x}_3 \vee x_4)(\bar{x}_1 \vee \bar{x}_2 \vee x_3 \vee \bar{x}_4)$

Exercise 1 (Answer)

At first, for each clause, we divide two clauses by one new variable.

$$
\phi = (x_1 \vee \bar{x}_2 \vee x_3 \vee x_4)(\bar{x}_1 \vee x_2 \vee \bar{x}_3 \vee x_4)(\bar{x}_1 \vee \bar{x}_2 \vee x_3 \vee \bar{x}_4)
$$

\n
$$
C_1 = (x_1 \vee \bar{x}_2 \vee x_3 \vee x_4) \rightarrow (x_1 \vee \bar{x}_2 \vee u)(x_3 \vee x_4 \vee \bar{u})
$$

\n
$$
C_2 = (\bar{x}_1 \vee x_2 \vee \bar{x}_3 \vee x_4) \rightarrow (\bar{x}_1 \vee x_2 \vee v)(\bar{x}_3 \vee x_4 \vee \bar{v})
$$

\n
$$
C_3 = (\bar{x}_1 \vee \bar{x}_2 \vee x_3 \vee \bar{x}_4) \rightarrow (\bar{x}_1 \vee \bar{x}_2 \vee z)(x_3 \vee \bar{x}_4 \vee \bar{z})
$$

We combine these clauses with AND and replace u, v, z by z_1, z_2, z_3 , respectively.

$$
\phi' = (x_1 \vee \bar{x}_2 \vee z_1)(\bar{z}_1 \vee x_3 \vee x_4)(\bar{x}_1 \vee x_2 \vee z_2)(\bar{x}_3 \vee x_4 \vee \bar{z}_2)
$$

$$
\cdot (\bar{x}_1 \vee \bar{x}_2 \vee z_3)(x_3 \vee \bar{x}_4 \vee \bar{z}_3)
$$

32

Polynomial-time Reduction from 3SAT to Vertex Cover

Review: Vertex Cover (VC)

Input: A graph G and a positive integer k

Ask: Is there a vertex cover of size k in G ?

Vertex Cover: A set of vertices C such that for every edge e , at least one endpoint of e in C .

- A reduction from CNF-SAT to 3SAT is a reduction from a
- Boolean formula to a Boolean formula.
- This reduction is from a Boolean formula to a graph.
- For simplicity, all clauses of 3CNF have exact 3 literals.

$$
\phi = (x_1 \vee \overline{x}_2 \vee x_3)(\overline{x}_1 \vee x_2 \vee \overline{x}_3)(\overline{x}_1 \vee \overline{x}_2 \vee x_3)
$$

First, we create two gadgets from a given formula ϕ .

- Ø Variable Gadget
	- \checkmark For each variable x_i of ϕ , we create two vertices, one corresponds positive literal x_i and the other corresponds negative literal \bar{x}_i . Then, connect these vertices.

$$
(x_1 - (\bar{x}_1) \qquad (x_2 - (\bar{x}_2) \qquad (x_3 - (\bar{x}_3))
$$

First, we create two gadgets from a given formula ϕ .

- **≻ Clause Gadget**
	- \checkmark For each clause C of ϕ and each literal x_i (or \bar{x}_i) in C, create one vertex and connect these vertices each other.

Examples two gadgets from a formula

$$
\phi = (x_1 \vee \overline{x}_2 \vee x_3)(\overline{x}_1 \vee x_2 \vee \overline{x}_3)(\overline{x}_1 \vee \overline{x}_2 \vee x_3)
$$

Variable Gadets

Clause Gadets x_1 \bar{x}_2 x_3 $\overline{\tilde{x}}_1$ x_2 \bar{x}_3 \bar{x}_1 \overline{x}_2 x_3 $x_1 \vee \bar{x}_2 \vee x_3$ $(\bar{x}_1 \vee x_2 \vee \bar{x}_3)$ $(\bar{x}_1 \vee \bar{x}_2 \vee x_3)$

Next, we connect the variable gadgets to the clause gadgets.

Rule : the same label vertices are connected.

 $\phi = (x_1 \vee \overline{x}_2 \vee x_3)(\overline{x}_1 \vee x_2 \vee \overline{x}_3)(\overline{x}_1 \vee \overline{x}_2 \vee x_3)$

G

$$
\phi = (x_1 \vee \overline{x}_2 \vee x_3)(\overline{x}_1 \vee x_2 \vee \overline{x}_3)(\overline{x}_1 \vee \overline{x}_2 \vee x_3)
$$

We consider a safisfying assignment α of ϕ such as $x_1 = 1, x_2 = 0, x_3 = 0$.

We obtain the desired vertex cover in the following manner.

- \triangleright First, we take n vertices labeled by the literal that is set to 1.
	- \checkmark In the above example, we take three vertices labeled with x_1 , \bar{x}_2 , \bar{x}_3

$$
\phi = (x_1 \vee \overline{x}_2 \vee x_3)(\overline{x}_1 \vee x_2 \vee \overline{x}_3)(\overline{x}_1 \vee \overline{x}_2 \vee x_3)
$$

We consider a satisfying assignment α of ϕ such as $x_1 = 1, x_2 = 0, x_3 = 0$.

We obtain the desired vertex cover in the following manner.

 \triangleright For each clause gadget, we take two vertices that is not connected to the vertex in variable gadgets taken in the previous slide. If there is no such vertex, we take arbitrary two vertices.

satisfying assignment to vertex cover

$$
\phi = (x_1 \vee \overline{x}_2 \vee x_3)(\overline{x}_1 \vee x_2 \vee \overline{x}_3)(\overline{x}_1 \vee \overline{x}_2 \vee x_3)
$$

Satisfying assignment $\alpha : x_1 = 1, x_2 = 0, x_3 = 0$

43 A set of blue vertices is a vertex cover, correctly.

satisfying assignment to vertex cover

Let ϕ be a 3CNF with n variables and m clauses.

Let G be the graph that is reducible from ϕ by the previous described reduction.

- The number of vertices in G is 2n+3m and the number of edges in G is 4n+3m.
- The size of VC is n+2m because for each variable gadget, one vertex is included in VC and for each clause gadget, two vertices is included in VC.

Why is this reduction correct?

Let ϕ be a 3CNF with n variables and m clauses. Let G be the graph that is reducible from ϕ by the previous described reduction.

We need to prove the followings for correctness.

- \triangleright The reduction runs in polynomial time.
- \triangleright (\Rightarrow) If a given ϕ is satisfiable, then there exists a vertex cover of size n+2m in G.
- \triangleright (\Leftarrow) If there exists a vertex cover of size n+2m in G, then ϕ is satisfiable.

Why is this reduction correct?

Let ϕ be a 3CNF with n variables and m clauses. Let G be the graph that is reducible from ϕ by the previous described reduction.

We need to prove the followings for correctness.

- \triangleright The reduction runs in polynomial time.
- \triangleright (\Rightarrow) If a given ϕ is satisfiable, then there exists a vertex cover of size n+2m in G.
- \triangleright (\Leftarrow) If there exists a vertex cover of size n+2m in G, then ϕ is satisfiable.

The reduction runs in polynomial time.

Creating each variable gadget takes O(1) time

- Creating each clause gadget takes O(1) time
- Thus, creating all gadgets takes $O(n)+O(m) = O(n+m)$ time.

Connecting each variable gadget to clause gadgets takes O(nm) time because the number of vertrices in variable gadgets is 2n and that in edge gadgets is 3m.

The overall running time is $O(nm+n+m) = O(nm)$. O(nm) is polynomial of n+m, thus the reduction is in polynomial time.

Why is this reduction correct?

Let ϕ be a 3CNF with n variables and m clauses. Let G be the graph that is reducible from ϕ by the previous described reduction.

We need to prove the followings for correctness.

- \triangleright The reduction runs in polynomial time.
- \triangleright (\Rightarrow) If a given ϕ is satisfiable, then there exists a vertex cover of size n+2m in G.

 \triangleright (\Leftarrow) If there exists a vertex cover of size n+2m in G, then ϕ is satisfiable.

A sketch of proof for (\Rightarrow) part

- There exists a satisfying assignment to α , then for each clause C, there exists at least one literal in C that is set to 1.
- \triangleright For each variable gadget, one of two vertices is included in a vertex cover. Thus, all edges in variable gadgets are covered.
- \triangleright For each clause gadget, two of three vertices are included in a vertex cover. Thus, all edges in clause gadgets are covered.

A sketch of proof for (\Rightarrow) part

It remains to show that any edge between variable

gadgets and clause gadgets is covered.

- \triangleright Any edge that is connected to the vertex in variable gadgets included in the vertex cover have already been covered.
- \triangleright Other edges have also already covered by vertices in clause gadgets included in the vertex cover.

Why is this reduction correct?

Let ϕ be a 3CNF with n variables and m clauses. Let G be the graph that is reducible from ϕ by the previous described reduction.

We need to prove the followings for correctness.

- \triangleright The reduction runs in polynomial time.
- \triangleright (\Rightarrow) If a given ϕ is satisfiable, then there exists a vertex cover of size n+2m in G.

 \triangleright (\Leftarrow) If there exists a vertex cover of size n+2m in G, then ϕ is satisfiable.

A sketch of proof for (\Leftarrow) part

To obtain a vertex cover, we must take vertices while satisfying the following two conditions.

- \triangleright Take at least one vertex from each variable gadget.
- \triangleright Take at least two vertices from each clause gadget.

Now, we consider a vertex cover of size n+2m, thus we must take

- \triangleright exact one vertex from each variable gadget
- \triangleright exact two vertices from each clause gadget

A sketch of proof for (\Leftarrow) part

Our assumption assure that there exists a vertex cover of size n+2m, thus we can obtain the desired vertex cover C for taking vertices appropriately.

It is easy to see that we can obtain a satisfying assignment α to ϕ from the label of the vertices in vertex gadgets of C.

Exercise 2

Reduce the following instance ϕ of 3SAT to an instance G of VC by the reduction explained in the previous slides.

$$
\phi = (x_1 \vee \overline{x}_3 \vee x_4)(\overline{x}_1 \vee x_2 \vee \overline{x}_3)(\overline{x}_2 \vee x_3 \vee \overline{x}_4)
$$

Let α be a satisfying assignment to ϕ such as

 $x_1 = 1, x_2 = 0, x_3 = 0, x_4 = 1.$

Show VC in G correspondings to α .

Exercise 2 (Answer)

Summary

We introduce the definition of NP-complete problem.

- \triangleright Reductions and polynomial-time reductions
	- \checkmark From the independent set problem to the vertex cover problem.
- \triangleright NP-completeness via a polynomial-time reduction from CNF-SAT to 3SAT
- \triangleright NP-completeness via a polynomial-time reduction from 3SAT to Vertex Cover