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Study the foundation on theory of computation
Ø Reduction
Ø NP-complete Problems and Polynomial-time Reducitons
Ø Polynomial-time Reduction from CNF-SAT to 3SAT
Ø Polynomial-time Reduction from 3SAT to Vertex Cover 
Problem
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A reduction is a map from an instance of problem A to an 
instance of problem B such that an instance of problem A 
outputs Yes if and only if a mapping instance of problem 
B also outputs Yes.
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Yes Yes

No No

Problem A Problem B



When one wants to solve a decision problem A, by using 
reduction, we can get the answer of A by solving the 
problem B.
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No No

Problem A Problem B



We consider the following two problems．
Ø Independent Set Problem：IS 
Ø Vertex Cover Problem：VC 
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Independent Set Vertex Cover



Input：A Graph 𝐺 and a positive integer 𝑘
Ask：Is there an independent set of size 𝑘 in 𝐺
Independent Set：A set 𝐼	such that any two elements in 𝐼 are 
not adjacent in 𝐺. 
Note that the empty set ∅ is an independent set.

7
Orange circles are independent set Not independent set



Input：A graph 𝐺 and a positive integer 𝑘
Ask：Is there a vertex cover of size 𝑘 in 𝐺 ?
Vertex Cover：A set of vertices 𝐶 such that for every 
edge 𝑒, at least one endpoint of 𝑒 in 𝐶.

8Blue circles are vertex cover Not vertex cover
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VC ( k=4 )

IS ( k=2 )

Orange Circles (IS) + Blue Circles (VC) = All Vertices



There exists an independent set of size k in G
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There exists a vertex cover of size n-k in G

Let V be a vertex set of G. Let S be an independent set in G and T be 
a vertex set V-S
⇒ Since S is an IS, then there is no edge between any pair of vertices    
    in S.
⇒ Every vertex in S has an edge to some vertex in T.
⇒ T must be a vertex cover. (See a figure in next slide)
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S
Independent set

T
Vertex cover

There exists an independent set of size k in G

There exists a vertex cover of size n-k in G



Input：A Graph 𝐺 and a positive integer 𝑘
Ask (IS)：Is there an independent set of size 𝑘 in 𝐺
Ask (VC)：Is there a vertex cover of size 𝑛 − 𝑘 in 𝐺 ?

If IS outputs Yes、then VC outputs Yes.
⇒ Does it hold that if IS outputs No, then VC outputs No？
We consider a contraposition.
Does is hold that if VC outputs Yes, then IS outputs Yes ?
⇒ It holds.（Consider why it holds by yourself）
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There exists the following map from an instance of IS to 
an instance of VC. This is a reduction.
Ø If there exists an independent set of size k in G, then 
there exist a vertex cover of size n-k in G.

Ø If there exists no independent set of size k in G, then 
there exists no vertex cover of size n-k in G.

13

Yes Yes

No No

IS(k) VC(n-k)
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Class P（ Polynomial time ）
Ø A set of decision problems solved by deterministic TMs 
in polynomial time.

Class NP（ Nondeterministic Polynomial time ）
Ø A set of decision problems solved by non-deterministic 
TMs in polynomial time.

Ø A set of decision problems such that when a given x 
and a witness w, deterministic TMs decide that x is yes 
instances in polynomial time. 15



The definition of NP-complete Problem 
A decision problem L is NP-complete if 
Ø L is in NP.
Ø Any problem in NP can be reducible to L in 

deterministic polynomial time. (NP-hard)

Polynomial-time Reduction: A reduction from an instance 
of problem A to an instance of problem B by determinist 
TMs in polynomial time .

16
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P

NPC

NP-hard

NP



Intuitively, NPC is the most difficult problems in NP.
⇒ If a problem in NPC can be solved, then all problems in 

NP can be solved.
⇒ If a NP-complete problem can be in deterministic 

polynomial time, then P = NP. 
The following problems are typical NP-complete 
problems.
Ø Satisfiability Problem, Independent Set Problem, 
Vertex Cover Problem, Hamiltonian Cycle Problem, 
etc… 18



Input：Boolean formula φ
Ask：Is there exists an assignment to the input variables 
such as φ=1 ?

Satisfying assignment α : an assignment α such as φ=1

We say α satisfies φ when α is a satisfying assignment.
If φ has some satisfying assignment, we say φ is 
satisfiable.

CNF-SAT: The satisfiability problem for CNF.
CNF：(𝑥! ∨ �̅�")(𝑥! ∨ 𝑥" ∨ 𝑥#)(�̅�! ∨ 𝑥" ∨ 𝑥#)(�̅�! ∨ �̅�#) 19



If a problem has a reduction from SAT, it is also NP-
complete problem.
From the next slide, We see some reductions from 
SAT.
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SAT is the first problem shown that it is NP-complete.

Cook-Levin’s Theorem [Cook ’71, Levin ’73]

SAT（ CNF-SAT ）is NP-complete.
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kSAT
Input：kCNF φ
Ask：Is there exists an assignment to the input variables 
such as φ=1 ?

kCNF：CNF and each clause has at most k literals
3CNF： 𝑥! ∨ �̅�" 𝑥! ∨ 𝑥" ∨ 𝑥# �̅�! ∨ 𝑥" ∨ 𝑥# �̅�! ∨ �̅�#

3SAT when k=3.
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First, we show a reduction from 4SAT to 3SAT.

We consider the following clause with 4 literals.

23

𝐶! = 𝑥! ∨ �̅�" ∨ 𝑧 𝐶" = �̅�# ∨ 𝑥$ ∨ ̅𝑧	

𝐶 = 𝑥! ∨ �̅�" ∨ �̅�# ∨ 𝑥$	

We introduce a new variable 𝑧 to construct two new 
clauses 𝐶! and 𝐶" .
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𝐶! = 𝑥! ∨ �̅�" ∨ 𝑧 𝐶" = �̅�# ∨ 𝑥$ ∨ ̅𝑧	

Next, we show the following.
Ø If 𝐶 is satisfiable by some assignment α, then α 
satisfies both 𝐶! and	𝐶".

𝐶 = 𝑥! ∨ �̅�" ∨ �̅�# ∨ 𝑥$	

If α set 𝑥! = 1	or �̅�" = 1, then by setting 𝑧 = 0, both 𝐶! 
and 𝐶" are satisfiable.
If α set �̅�# = 1 or 𝑥$ = 1, then by setting 𝑧 = 1, both 𝐶! 
and 𝐶" are satisfiable
Thus, we can replace 𝐶 by 𝐶! and	𝐶".
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For all clauses with 4 literals, we do the similar 
replacements, we can convert 4CNF φ to 3CNF φ’ .
If φ is satisfiable, then φ’ is also satisfiable.

But, is it ture that if φ is not satisfiable, then φ’ is also 
not satisfiable.
Ø We consider the contraposition.
 「If φ’ is satisfiable、φ is also satisfiable.」
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See the previous example. We show the following.
If both 𝐶! and 𝐶" are satisfiable, then 𝐶 is also satifiable.

𝐶! = 𝑥! ∨ �̅�" ∨ 𝑧 𝐶" = �̅�# ∨ 𝑥$ ∨ ̅𝑧	 𝐶 = 𝑥! ∨ �̅�" ∨ �̅�# ∨ 𝑥$	

If we set 𝑧 = 0, we must set 𝑥! = 1 or �̅�" = 1 to satisfy 𝐶!. 
If we set 𝑧 = 1, we must set 𝑥# = 1 or 𝑥$ = 1 to satisfy 𝐶". 
Bothe case, 𝐶 is satisfiable.
This holds all clauses, thus if φ is not satisfiable, then 
φ’ is also not satisfiable.



This reduction is done in polynomial time.
For an input 4CNF φ, n denotes the number of variables in φ 
and m denotes the number of clauses in φ .
Ø One replacement is done in a constant time (=O(1)) because 
the number of each clause is 4. 

Ø The number of clauses is m, thus the total time of 
replacements is done in O(m) time.

Input size is n+m, thus this reduction is done in polynomial 
time because O(m) is polynomial of n+m.
The number of variables (clauses) in φ’ is at most n+m (2m) 

27



Almost same as the reduction from 4SAT to 3SAT.
We consider the following clause with k literals.
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𝐶% = 𝑥! ∨ 𝑥" ∨ 𝑧! ̅𝑧! ∨ 𝑥# ∨ 𝑧" ̅𝑧" ∨ 𝑥$ ∨ 𝑧# ⋯ ̅𝑧&'# ∨ 𝑥&'! ∨ 𝑥&

𝐶 = 𝑥! ∨ 𝑥" ∨ 𝑥# ∨ 𝑥$ ∨ ⋯∨ 𝑥&'! ∨ 𝑥&

We introduce a new variable 𝑧!, 𝑧", … , 𝑧&'# to replace 𝐶 by 
the following 𝐶′.

By this replacement, kSAT is reducible to 3SAT.



This reduction is done in polynomial time.
For an input kCNF φ, n denotes the number of variables in φ 
and m denotes the number of clauses in φ .
Ø One replacement is done in O(k) time because the number 
of each clause is k. 

Ø The number of clauses is m, thus the total time of 
replacements is done in O(km) time.

Input size is n+m, thus this reduction is done in polynomial 
time because O(km) is polynomial of n+m.
The number of variables (clauses) in φ’ is at most n+m(k-3) 
((k-2)m). 29



CNF-SAT is also kSAT, but k may be n.
However, a reduction is the same as that of kSAT from 
3SAT.

Thus, time complexity of this reduction is O(nm) because 
the previous reduction takes O(km) time and k=n.
It is polynomial time because O(mn) is polynomial of n+m. 
Because CNF-SAT is NP-complete and the reduction is 
polynomial time, thus 3SAT is also NP-complete.

30



Reduce the following instance of 4SAT to an instance of 
3SAT by the reduction explained in the previous slides. 
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𝜙 = 𝑥! ∨ �̅�" ∨ 𝑥# ∨ 𝑥$ �̅�! ∨ 𝑥" ∨ �̅�# ∨ 𝑥$ �̅�! ∨ �̅�" ∨ 𝑥# ∨ �̅�$



At first, for each clause, we divide two clauses by one new 
variable.
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𝐶! = 𝑥! ∨ �̅�" ∨ 𝑥# ∨ 𝑥$ → 𝑥! ∨ �̅�" ∨ 𝑢 𝑥# ∨ 𝑥$ ∨ 9𝑢  
𝐶" = �̅�! ∨ 𝑥" ∨ �̅�# 	∨ 𝑥$ → �̅�! ∨ 𝑥" ∨ 𝑣 �̅�# 	∨ 𝑥$ ∨ �̅�  
𝐶# = �̅�! ∨ �̅�" ∨ 𝑥# ∨ �̅�$ → �̅�! ∨ �̅�" ∨ 𝑧 𝑥# ∨ �̅�$ ∨ ̅𝑧  

𝜙 = 𝑥! ∨ �̅�" ∨ 𝑥# ∨ 𝑥$ �̅�! ∨ 𝑥" ∨ �̅�# ∨ 𝑥$ �̅�! ∨ �̅�" ∨ 𝑥# ∨ �̅�$

We combine these clauses with AND and replace 𝑢, 𝑣, 𝑧 by 
𝑧!, 𝑧", 𝑧#, respectively.
𝜙% = 𝑥! ∨ �̅�" ∨ 𝑧!)( ̅𝑧! ∨ 𝑥# ∨ 𝑥$ �̅�! ∨ 𝑥" ∨ 𝑧")(�̅�# ∨ 𝑥$ ∨ ̅𝑧"	

⋅ �̅�! ∨ �̅�" ∨ 𝑧#)(𝑥# ∨ �̅�$ ∨ ̅𝑧#
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Input：A graph 𝐺 and a positive integer 𝑘
Ask：Is there a vertex cover of size 𝑘 in 𝐺 ?
Vertex Cover：A set of vertices 𝐶 such that for every 
edge 𝑒, at least one endpoint of 𝑒 in 𝐶.

34Blue circles are vertex cover Not vertex cover



A reduction from CNF-SAT to 3SAT is a reduction from a 
Boolean formula to a Boolean formula.
This reduction is from a Boolean formula to a graph.
For simplicity, all clauses of 3CNF have exact 3 literals.
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𝜙 = 𝑥! ∨ �̅�" ∨ 𝑥# �̅�! ∨ 𝑥" ∨ �̅�# �̅�! ∨ �̅�" ∨ 𝑥#

a graph 
G



First, we create two gadgets from a given formula φ.
Ø Variable Gadget

ü For each variable 𝑥( of φ, we create two vertices, 
one corresponds positive literal 𝑥( and the other 
corresponds negative literal �̅�(. Then, connect these 
vertices. 
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𝑥! �̅�! 𝑥" �̅�" 𝑥# �̅�#



First, we create two gadgets from a given formula φ.
Ø Clause Gadget

ü For each clause 𝐶 of φ and each literal 𝑥( (or �̅�() in 𝐶, 
create one vertex and connect these vertices each 
other.  

37

𝑥!

�̅�" 𝑥#

�̅�!

𝑥" �̅�#

�̅�!

�̅�" 𝑥#
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𝜙 = 𝑥! ∨ �̅�" ∨ 𝑥# �̅�! ∨ 𝑥" ∨ �̅�# �̅�! ∨ �̅�" ∨ 𝑥#

𝑥! �̅�! 𝑥" �̅�" 𝑥# �̅�#

Variable Gadets

Clause Gadets

𝑥!

�̅�" 𝑥#

�̅�!

𝑥" �̅�#

�̅�!

�̅�" 𝑥#

𝑥! ∨ �̅�" ∨ 𝑥# �̅�! ∨ 𝑥" ∨ �̅�#	 �̅�! ∨ �̅�" ∨ 𝑥#



Next, we connect the variable gadgets to the clause 
gadgets.
Rule : the same label vertices are connected.
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𝑥! �̅�! 𝑥" �̅�" 𝑥# �̅�#

𝑥!

�̅�" 𝑥#

�̅�!

𝑥" �̅�#

�̅�!

�̅�" 𝑥#
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𝜙 = 𝑥! ∨ �̅�" ∨ 𝑥# �̅�! ∨ 𝑥" ∨ �̅�# �̅�! ∨ �̅�" ∨ 𝑥#

𝑥! �̅�! 𝑥" �̅�" 𝑥# �̅�#

𝑥!

�̅�" 𝑥#

�̅�!

𝑥" �̅�#

�̅�!

�̅�" 𝑥#

G
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𝜙 = 𝑥! ∨ �̅�" ∨ 𝑥# �̅�! ∨ 𝑥" ∨ �̅�# �̅�! ∨ �̅�" ∨ 𝑥#

We consider a safisfying assignment α of φ such as 
𝑥! = 1, 𝑥" = 0, 𝑥# = 0	. 
We obtain the desired vertex cover in the following 
manner.
Ø First, we take n vertices labeled by the literal that is set 
to 1.
ü In the above example, we take three vertices labeled 
with 𝑥!, 	�̅�" , �̅�#
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𝜙 = 𝑥! ∨ �̅�" ∨ 𝑥# �̅�! ∨ 𝑥" ∨ �̅�# �̅�! ∨ �̅�" ∨ 𝑥#

We consider a satisfying assignment α of φ such as 
𝑥! = 1, 𝑥" = 0, 𝑥# = 0	. 
We obtain the desired vertex cover in the following 
manner.
Ø For each clause gadget, we take two vertices that is not 
connected to the vertex in variable gadgets taken in the 
previous slide. If there is no such vertex, we take 
arbitrary two vertices.
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𝜙 = 𝑥! ∨ �̅�" ∨ 𝑥# �̅�! ∨ 𝑥" ∨ �̅�# �̅�! ∨ �̅�" ∨ 𝑥#

𝑥! �̅�! 𝑥" �̅�" 𝑥# �̅�#

𝑥!

�̅�" 𝑥#

�̅�!

𝑥" �̅�#

�̅�!

�̅�" 𝑥#

Satisfying assignment α：𝑥! = 1, 𝑥" = 0, 𝑥# = 0

A set of blue vertices is a vertex cover, correctly. 

G



Let φ be a 3CNF with n variables and m clauses.
Let G be the graph that is reducible from φ by the 
previous described reduction.

The number of vertices in G is 2n+3m and the number of 
edges in G is 4n+3m.
The size of VC is n+2m because for each variable gadget, 
one vertex is included in VC and for each clause gadget, 
two vertices is included in VC. 

44
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Let φ be a 3CNF with n variables and m clauses.
Let G be the graph that is reducible from φ by the 
previous described reduction.

We need to prove the followings for correctness.
Ø The reduction runs in polynomial time. 
Ø (⇒) If a given φ is satisfiable, then there exists a vertex 
cover of size  n+2m in G.

Ø (⇐ ) If there exists a vertex cover of size n+2m in G, 
then φ is satisfiable. 
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Let φ be a 3CNF with n variables and m clauses.
Let G be the graph that is reducible from φ by the 
previous described reduction.

We need to prove the followings for correctness.
Ø The reduction runs in polynomial time. 
Ø (⇒) If a given φ is satisfiable, then there exists a vertex 
cover of size  n+2m in G.

Ø (⇐ ) If there exists a vertex cover of size n+2m in G, 
then φ is satisfiable. 
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Creating each variable gadget takes O(1) time
Creating each clause gadget takes O(1) time
Thus, creating all gadgets takes O(n)+O(m) = O(n+m) time.

Connecting each variable gadget to clause gadgets takes 
O(nm) time because the number of vertrices in variable 
gadgets is 2n and that in edge gadgets is 3m.

The overall running time is O(nm+n+m) = O(nm).
O(nm) is polynomial of n+m, thus the reduction is in 
polynomial time.
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Let φ be a 3CNF with n variables and m clauses.
Let G be the graph that is reducible from φ by the 
previous described reduction.

We need to prove the followings for correctness.
Ø The reduction runs in polynomial time. 
Ø (⇒) If a given φ is satisfiable, then there exists a vertex 
cover of size  n+2m in G.

Ø (⇐ ) If there exists a vertex cover of size n+2m in G, 
then φ is satisfiable. 
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There exists a satisfying assignment to α, then for each 
clause C, there exists at least one literal in C that is set 
to 1. 
Ø For each variable gadget, one of two vertices is 
included in a vertex cover. Thus, all edges in variable 
gadgets are covered.

Ø For each clause gadget, two of  three vertices are 
included in a vertex cover. Thus, all edges in clause 
gadgets are covered.
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It remains to show that any edge between variable 
gadgets and clause gadgets is covered.
Ø Any edge that is connected to the vertex in variable 
gadgets included in the vertex cover have already 
been covered.

Ø Other edges have also already covered by vertices in 
clause gadgets included in the vertex cover.
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Let φ be a 3CNF with n variables and m clauses.
Let G be the graph that is reducible from φ by the 
previous described reduction.

We need to prove the followings for correctness.
Ø The reduction runs in polynomial time. 
Ø (⇒) If a given φ is satisfiable, then there exists a vertex 
cover of size  n+2m in G.

Ø (⇐ ) If there exists a vertex cover of size n+2m in G, 
then φ is satisfiable. 
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To obtain a vertex cover, we must take vertices while 
satisfying the following two conditions.
Ø Take at least one vertex from each variable gadget.
Ø Take at least two vertices from each clause gadget.

Now, we consider a vertex cover of size n+2m, thus we 
must take
Ø exact one vertex from each variable gadget
Ø exact two vertices from each clause gadget
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Our assumption assure that there exists a vertex cover 
of size n+2m, thus we can obtain the desired vertex 
cover C for taking vertices appropriately.

It is easy to see that we can obtain a satisfying 
assignment α to φ from the label of the vertices in 
vertex gadgets of C.



Reduce the following instance φ of 3SAT to an instance 
G of VC by the reduction explained in the previous slides. 

Let α be a satisfying assignment to φ such as 
𝑥! = 1, 𝑥" = 0, 𝑥# = 0, 𝑥$ = 1.
Show VC in G correspondings to α.

54

𝜙 = 𝑥! ∨ �̅�# ∨ 𝑥$ �̅�! ∨ 𝑥" ∨ �̅�# �̅�" ∨ 𝑥# ∨ �̅�$
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𝑥! �̅�! 𝑥" �̅�" 𝑥# �̅�#

𝑥!

�̅�# 𝑥$

�̅�!

𝑥" �̅�#

�̅�"

𝑥# �̅�$

𝑥$ �̅�$

𝜙 = 𝑥! ∨ �̅�# ∨ 𝑥$ �̅�! ∨ 𝑥" ∨ �̅�# �̅�" ∨ 𝑥# ∨ �̅�$

In this gadget, 
take arbitrary two nodes. 
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We introduce the definition of NP-complete problem.
Ø Reductions and polynomial-time reductions

ü From the independent set problem to the vertex 
cover problem.

Ø NP-completeness via a polynomial-time reduction from 
CNF-SAT to 3SAT

Ø NP-completeness via a polynomial-time reduction from 
3SAT to Vertex Cover


