
1

2

Study algorithms for NP-complete problems.
Ø Exact Algorithms and Approximation Algorithms
Ø 2-Approximation Algorithm for the Metric TSP
Ø Kruskal’s Algorithm for the Minimum Spanning Tree

3

A NP-complete problem is the problem 𝐴 satisfying the
following two conditions.
Ø A is in NP.
Ø Any problem in NP is reducible to 𝐴 in polynomial time.

It is believed that NP-complete problems cannot be solved
in deterministic polynomial time.
⇒ The size of inputs grows large, solving NP-complete
problem takes huge time.

4

But, many problems in the real world are formulated to
some NP-complete problem.
Thus, we cannot give up to solve the problem, and we
must try to solve in some way.

There exists two main approaches : Exact Algorithms and
Approximation Algorithms.

5

Exact Algorithm
Ø Search an exact solution
Ø It may run in exponential time
Ø In many cases of the real world,
we must get an exact solution.
The other solutions has no
meanings.

ØWe need a faster algorithm as
possible

Approximation Algorithm
Ø Search an approximate solution
Ø It must run in polynomial time
Ø In many cases of the real world,
we need not an exact solution,
but we get good approximation
solution as fast as possible.

ØWe need a good approximation
algorithm as possible.

Trade Off ! 6

Input：a weighted graph 𝐺
Ask：Search a minimum Hamiltonian cycle
Output：a minimum Hamiltonian cycle (MHC)
MHC: A cycle 𝐶 that visits every vertex of 𝐺 exactly at once and
the total weight of edges in 𝐶 is minimum.

74

2

1

4

3

5

3

1 2

5

2
2

3

4

2

1

4

3

5

3

1 2

5

2
2

3

Metric TSP：TSP satisfies the following two conditions
Ø Input graph is a complete graph

ü Complete graph: any pair of vertices has an edge.
Ø Let w 𝑥, 𝑦 	is a weight between 𝑥 and 𝑦. Any three
vertices 𝐴, 𝐵, 𝐶	satisfies the triangle inequality.

𝑤 𝐴,𝐵 ≤ 𝑤 𝐴, 𝐶 + 𝑤(𝐵, 𝐶)

8

2

1

4

3

5

2

1

4

3

5
Not complete graph complete graph

Metric TSP：TSP satisfies the following two conditions
Ø Input graph is a complete graph

ü Complete graph: any pair of vertices has an edge.
Ø Let w 𝑥, 𝑦 	is a weight between 𝑥 and 𝑦. Any three
vertices 𝐴, 𝐵, 𝐶	satisfies the triangle inequality.

𝑤 𝐴,𝐵 ≤ 𝑤 𝐴, 𝐶 + 𝑤(𝐵, 𝐶)

9triangle inequality doesn’t hold

𝐴

𝐵 𝐶
1

1

3
𝐴

𝐵 𝐶
1

1

2

triangle inequality holds

Because Metric TSP is NP-hard problem, it seems to be

impossible to get an optimal solution in polynomial time.

⇒ We try to get a good approximation solution in

polynomial time.

We estimate the performance of approximation

algorithms by approximation ratios.

10

Approximation ratio is the worst value of

$%&'	%)	'*+	&%,-'.%/	&%,0+1	23	4,5%6.'*7
$%&'	%)	'*+	%8'.79,	&%,-'.%/

A 𝑐-approximation algorithm is defined as an

approximation algorithm whose approximation ratio is

less than or equal 𝑐.

11

Upper Bounds of approximation ratio
Ø 2-approximation [Folklore]
Ø 1.5-approximation [Cristofides 1976]
Ø 1.5-10-36 ‒ approximation [Karlin, Klein, and Graham
2020]

Hardness of approximation
Ø Unless P=NP, there in no 123/122-approximation
polynomial-time algorithm. [Karpinski, Lampis, and
Schmied 2006] 12

There exists an 𝑂 𝑛!2" time exact algorithm for TSP by
using a dynamic programming.
However, it has yet known an exact algorithm essentially
faster than 𝑂 𝑛!2" time.

If you know the algorithm by using a dynamic
programming, you search in web sites.
There are many articles about it.

13

14

A tree is a graph that has no cycle.

In the following figures,

ØThe graph 𝐺#	has a cycle (1-2-3-1)

ØThe graph 𝐺!	has no cycle, thus it is a tree.

2

1

4

3

5

15

2

1

4

3

5

𝐺# 𝐺!

A subgraph 𝐻 is a graph using a subset of vertices and
edges in 𝐺.
Ø In the following figures, 𝐻#	and 𝐻! are subgraph of 𝐺.

2

1

4

3

5

16

2

1

4

3

5

2

1

4 5

(i) 𝐺 (ii) 𝐻# (iii) 𝐻!

A spanning tree is a subgraph such that it is a tree
and all vertices are connected.
Ø In the following figures, 𝐻#	and 𝐻! are spanning
trees of 𝐺.

2

1

4

3

5

17

2

1

4

3

5

2

1

4

3

5

(i) 𝐺 (ii) 𝐻# (iii) 𝐻!

18

2

1

4

3

5

2

1

4

3

5

2

1

4

3

5

2

1

4

3

5

2

1

4

3

5

2

1

4

3

5

Given a weighted graph 𝐺, a minimum spanning tree 𝑇
is a spanning tree such that the total edge weight of 𝑇
is minimum between all spanning trees.
Ø 𝐻 is a minimum spanning tree of 𝐺.

19

2

1

4

3

5

1

4
2
31

4
2

1

4

3

5

1

4
2

1

𝐺 𝑇

20

2

1

4

3

5

2

1

4

3

5

2

1

4

3

5

2

1

4

3

5

2

1

4

3

5

2

1

4

3

5

The spanning tree in the red rectangle is the minimum
spanning tree of 𝐺 in the previous slide.

4

1
2

4

1
2 4

1 1
4

4
1

4

2 43 4

4

1

1

1

4

3

3

We use a minimum spanning tree.

1. Compute a minimum spanning tree 𝑇 of a given graph 𝐺.

2. Construct the graph 𝑇′	from 𝑇 by doubling every edge.

3. Compute a cycle 𝐶 throughout all vertices on 𝑇′.

 ※ The same vertex may be passed through twice.

4. Compute the Hamiltonian cycle 𝐶′	from 𝐶 to shortcut

vertices already passed.

5. Output 𝐶′	and the total weight of edges in 𝐶’.

21

1．Compute a minimum spanning tree 𝑇	of a given graph 𝐺.
 It’s done by Kruskal’s algorithm（explain it later）or
 Prim’s algorithm

22

2

1

4

3

5

2

1

4

3

5

𝐺 𝑇

1

1

2

2

4

3 3
3

3 2

1

1
2

2

2．Construct the graph 𝑇′ from 𝑇 by doubling every edge.

23

2

1

4

3

5

𝑇 𝑇′

2

1

4

3

5

1

1
2

2

2

2

1

1

1 1

2

2

3．Compute a cycle 𝐶 throughout all vertices on 𝑇.

 ※ The same vertex may be passed through twice.

24
𝑇′

1 → 3 → 2 → 3 → 5
→ 4 → 5 → 3 → 1

𝐶

2

1

4

3

5

2

2

1

1

1 1

2

2

4．Compute the Hamiltonian cycle 𝐶′ from 𝐶 to

shortcut vertices already passed.

25

1 → 3 → 2 → 3 → 5
→ 4 → 5 → 3 → 1

𝐶

1 → 3 → 2 → 5 → 4 → 1

𝐶′

5．Output 𝐶’ and the total weight of edges in 𝐶′.

26

𝐶′ :1 → 3 → 2 → 5 → 4 → 1

The total weights : 11

2

1

4

3

5

2

1

4

3

5

𝐺

1

1

2

2

4

3 3
3

3 2
1

3
2

3

2

Let the number of vertices and that of edges be 𝑛 and 𝑚,
respectively.

1. Compute a minimum spanning tree 𝑇 of a given graph 𝐺.
→ 𝑂 𝑛log!𝑚 （explain it later）

2. Construct the graph T’ from T by doubling every edge.

→ 𝑂(𝑛)
3. Compute a cycle C throughout all vertices on T’. → 𝑂(𝑛)

4. Compute the Hamiltonian cycle C’ from C to shortcut vertices
already passed. → 𝑂(𝑛)

5. Output C’ and the total weight of edges in C’. → 𝑂(𝑛)

The total running time is 𝑂 𝑛log!𝑚 . 27

We define the following about a given graph 𝐺.

OPT: The total weights of a min. Hamiltonian cycle of 𝐺

MST: The total weights of a min. spanning tree of 𝐺

First, it is easy to see that

MST ≦ OPT

holds because any Hamiltonian cycle has one more edge

than a minimum spanning tree has.
28

We consider a cycle 𝐶 throughout all vertices on 𝑇′	

constructed from a minimum spanning tree 𝑇 by

doubling every edge.
The total weights of edges in 𝐶 is 2×MST.

29

𝐺′
2

1

4

3

5

2

2

1

1

1 1

2

2

𝐶: 1 → 3 → 2 → 3 → 5
→ 4 → 5 → 3 → 1

We consider the Hamiltonian cycle 𝐶′	from 𝐶 to shortcut

vertices already passed.

Let ALG be the total weights of edges in 𝐶′.

Then,

ALG ≦ 2×MST

holds.

Why？？

→ Metric TSP has triangle inequality constraints.
30

See example. We consider 𝐶 and 𝐶′ in slide 25.
𝐶：1 → 3 → 2 → 3 → 5 → 4 → 5 → 3 → 1
𝐶!: 1 → 3 → 2 → 5 → 4 → 1
First, we shortcut 2 → 3 → 5 to 2 → 5.
Note that triangular inequality between the weights between
any three vertices, then

holds. If 𝑤 2, 3 ≤ 𝑤(3, 5), then 𝑤 2, 5 ≤ 2𝑤 3, 5 .
Otherwise, 𝑤 2, 5 ≤ 2𝑤 2, 3 .
Repeating this argument, the following holds.

ALG ≦ 2×MST
31

𝑤 2, 5 ≤ 𝑤 2, 3 + 𝑤(3, 5)

From the previous discussion,

Ø MST ≦ OPT

Ø ALG ≦ 2×MST

hold, and then

ALG ≦ 2×MST ≦ 2×OPT

holds.

Thus, for any graph G, ALG/OPT ≦ 2 holds.

The proof is completed.
32

33

In the figure, 𝑇 is a minimum spanning tree of 𝐺.
Our aim is to understand Kruskal’s algorithm.

34

5

2

1

4

3

5

3

1 1

5

5

2

4
2

1

4

3

5

1 1

2

4

𝐺 𝑇

Let 𝑛 be the number of vertices of 𝐺.
1. We set 𝑇 to be an empty graph (no vertex and no edge).
2. Until the number edges in 𝑇 is 𝑛 − 1, we repeat the
following operations.

A) Pick up an edge 𝑒 having the minimum weight.

Ø If the edge 𝑒 and edges in 𝑇 make a cycle, we don’t
adopt it as an edge of 𝑇.

Ø Otherwise, we adopt 𝑒 as an edge of 𝑇.
3. Output a tree 𝑇 with 𝑛 − 1 edges.

35

From 2-(A), we must pick up an edge e with the minimum
weight. Now, there are two edges (2, 4) and (3, 5) with the
minimum weight. We can choose both edges.
First, we pick up the edge (2,4) and adopt it as an edge of	𝑇.

365

2

1

4

3

5

3

1 1

5

5

2

4

5

2

1

4

3

5

3

1 1

5

5

2

4

Next, there is one edge (3,5) with the min. weight.
We pick up it and it doesn’t make a cycle.
Thus, we adopt it as an edge of	𝑇.

37

5

2

1

4

3

5

3

1 1

5

5

2

4

5

2

1

4

3

5

3

1 1

5

5

2

4

Next, there is one edge (1,4) with the min. weight.
We pick up it and it doesn’t make a cycle.
Thus, we adopt it as an edge of 𝑇.

38

5

2

1

4

3

5

3

1 1

5

5

2

4

5

2

1

4

3

5

3

1 1

5

5

2

4

Next, there is one edge (1, 2) with the minimum weight.
We pick up it, but it makes a cycle with edges (1,4) and
(2, 4) which have already been adopted.
Thus, we discard it and pick up the other edge.

395

2

1

4

3

5

3

1 1

5

5

2

4

5

2

1

4

3

5

3

1 1

5

5

2

4

Next, there is one edge (2,5) with the min. weight.
We pick up it and it doesn’t make a cycle.
Thus, we adopt it as an edge of 𝑇.

40

5

2

1

4

3

5

3

1 1

5

5

2

4

5

2

1

4

3

5

3

1 1

5

5

2

4

Now, we have adopted with 𝑛 − 1	(= 5 − 1 = 4) edges.
The algorithm stops and outputs 𝑇.
Indeed, we can see that 𝑇 is a minimum spanning tree.

41
5

2

1

4

3

5

3

1 1

5

5

2

4
2

1

4

3

5
1 1

2

4

Let #vertices and #edges be 𝑛 and 𝑚, respectively.
1. We set 𝑇 to be an empty graph. → 𝑂(1)
2. Until the number edges in 𝑇 is 𝑛 − 1, we repeat the following
operations.
A) Pick up an edge 𝑒 having the minimum weight.
 → the edges need to be sorted by weight. It takes 𝑂 𝑚log!𝑚 .
Ø If the edge 𝑒 and edges in	𝑇	make a cycle, we don’t adopt it as
an edge of 𝑇.
→ Checking whether e makes a cycle is 𝑂(𝑚) + 𝑂 𝑛log! 𝑛 time

 by using the union-find.
Ø Otherwise, we adopt 𝑒 as an edge of 𝑇. → 𝑂(1)

3. Output a tree 𝑇	with 𝑛 − 1 edges. → 𝑂(𝑛)
The total time is 𝑂 𝑚log!𝑚 	and 𝑚 ≤ 𝑛!	→ 𝑂 𝑚log! 𝑛 time. 42

43

We study on fundamentals of approximation algorithms that
attack toward NP-complete problems.
Ø 2-approximation algorithm for Metric TSP.
Ø Kruskal’s algorithm for Minimum Spanning Trees.

The data is bigger and bigger.
Ø 𝑂(𝑛")	time algorithms may be useless.
Ø It is important to find a “good” solution as fast as possible
Ø It is more pleasure if the worst-case complexity is ensured.

