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Study algorithms for NP-complete problems.
Ø 2-Approximation Algorithm for the Minimum Vertex 
Cover

Ø Exact Algorithms and FPT Algorithms
Ø FPT Algorithms for Vertex Cover
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Input：A graph 𝐺 and a positive integer 𝑘
Ask：Is there a vertex cover of size 𝑘 in 𝐺 ?
Vertex Cover：A set of vertices 𝐶 such that for every 
edge 𝑒, at least one endpoint of 𝑒 in 𝐶.

4Blue circles are vertex cover Not vertex cover



Input：A graph	𝐺
Output：A vertex cover 𝑈 whose size is minimum.
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𝐺 𝑈: blue vertices
There is no vertex 
cover of size 3.



Polynomial-time approximation algorithms
Ø 2-approximation [Gavril, Yannakakis] 

Ø 2 − 1/Θ log	𝑉  approximation [Karakostas 04]

Hardness of approximation
Ø Unless P=NP, there in no 1.3606-approximation 
polynomial-time algorithm. [Dinur and Safre 2005]

Ø If the Unique Games Conjecture holds, then there is no 
2-εapproximation polynomial-time algorithm [Knot and 
Regev 2003]
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Matching

A matching	𝑀	is a set of edges of a graph 𝐺 such that 
any pair of edges in 𝑀 cannot share any vertex.
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Orange lines are a matching



Maximal Matching

Ø A maximal matching is a matching 𝑀 of a graph	𝐺	

   that is not a subset of any other matching

8
Maximal Matching Not Maximal Matching



Maximum Matching

Ø A Maximum Matching is a maximal matching 𝑀 such 

that the number of edge in 𝑀 is maximum. 

9
Maximum MatchingNot Maximum Matching



The algorithm is based on a maximal matching.

1．Compute a maximal matching 𝑀 of a graph 𝐺.

2．Include both endpoints of each edge in a vertex   

     cover 𝑈′

3．Outputs 𝑈′

It’s quite simple algorithm!
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1．Compute a maximal matching	𝑀	of a graph 𝐺

Ø We repeat the following operation until checking all edges.

• We pick up an edge 𝑒 at random. 

ü If both endpoints of 𝑒 are not included in 𝑀, we add 𝑒 to 𝑀. 

ü Otherwise, we discard	𝑒.
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2．Include both endpoints of each edge in a vertex   

     cover 𝑈’ (blue vertices)

3．Outputs 𝑈’
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Let 𝑛 and 𝑚 be the number of vertices and edges of a 
graph 𝐺, respectively.

Algorithm:
1. Compute a maximal matching 𝑀 of a graph 𝐺 → 𝑂(𝑚)
2. Include both endpoints of each edge in a vertex cover 𝑈′ 
→ 𝑂(𝑛)

3. Outputs 𝑈′ → 𝑂(𝑛)

The overall running time is 𝑂(𝑛 +𝑚).
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Let 𝑈 be a minimum vertex cover and 𝑈′ be a vertex cover that 

the algorithm outputs and 𝑀 be a maximal matching of 𝐺. 

Then, the followings hold.

1． 𝑈 ≤ |𝑈!|	because 𝑈 is minimum.

2． 𝑀 ≤ |𝑈|	because any edges must be 

     covered by one element in 𝑈.

3．|𝑈′| 	= 	2|𝑀|	because the property of the algorithm.

From 2 and 3, 𝑈! = 	2 𝑀 ≤ 	2|𝑈|	holds.

Thus, this algorithm satisfies 2-approximation.
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In some case, we want an optimal solution.
Ø We cannot take an exponential time.
Ø A solution is assured to be optimal.

A simple exact algorithm for vertex cover : for any subset 
with size k of vertices, we check whether it is a vertex 
over or not. 

It takes  𝑂(𝑛!𝑚) = 	𝑂 𝑛!"# 	time because the number of 

subsets is 𝑂 𝑛! 	and checking procedure takes 𝑂(𝑚) time 
for each subset. 16



𝑂 𝑛!"#  is not efficient!
If 𝑘 is some constant, it is polynomial of 𝑛.

However, when 𝑛 = 10000	and 𝑘 = 10, then 𝑂 𝑛!"# 	is 
1000012	 = 1048	… It’s quite huge!

When k is small, can we seek a solution efficiently?

Improving 𝑂 𝑛!"# 	time to 𝑂 𝑛$.&! 	time is not enough…

The form 𝑂 𝑛' ! 	is not prefered, where 𝑓 𝑘  is some 
function of 𝑘. 
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FPT（Fixed Parameterized Tractable）
Ø Input size: 𝑛, a paremeter: 𝑘

Ø FPT algorithm can solve a problem in 𝑂 𝑓 𝑘 ×𝑛( ) 	time.

Is FPT algorithm polynomial-time algorithm?
Ø NO. Because 𝑘	may depend a function of 𝑛

ü Though 𝑂 2!𝑛  time is FPT, 
when 𝑘 = 𝑛, it takes 𝑂 𝑛2*

Ø However, when 𝑘 is small, FPT algorithm can solves a 
NP-complete problem efficiently. 18



Why are FPT algorithms important？
Ø We can obtain an optimal solution.
Ø If k is small, it becomes an efficient algorithm.

ü Note that it is polynomial time of n.
ü An algorithm runs in 𝑂 2𝑘𝑛 	time, 
   then when 𝑛 = 10000	and 𝑘 = 10, it takes about    

   107	time > 	𝑂 𝑛!"# 	≒ 	1048
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It have yet been proven, but probably it is not true.

There should be a hierarchy of difficulty within the NP 
complete problem.
Ø A set of problems that has a FPT algorithm.
Ø A set of problems that has no FPT algorithm.

ü W-hierarchy : W[1]-complete, W[2]-complete, …
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FPT algorithm

Ø 𝑂 2!𝑛 	time：simple branch and bound (explain later)

Ø 𝑂 𝑘#2! + 𝑛 	time by using kernelization (explain later）

Ø 𝑂 1.2738! + 𝑘𝑛 	time [Chen, Kanji and Xia 2006]

Hardness
Ø There exists no 2+ ! 𝑛( )  time algorithm if ETH 
( Exponential Time Hypothesis ) is true. 
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Input：A graph 𝐺 and a positive integer 𝑘
Ask：Is there a vertex cover of size 𝑘 in 𝐺 ?
Vertex Cover：A set of vertices 𝐶 such that for every 
edge 𝑒, at least one endpoint of 𝑒 in 𝐶.

23Blue circles are vertex cover Not vertex cover



𝐺	– 	𝑣	is a graph 𝐺′ obtained by removing the vertex 𝑣 and 
all edges connected to 𝑣 from 𝐺.

BS 𝐺, 𝑘 ：𝐺 has 𝑛 vertices.
1．If there is no edge in 𝐺, then return 0
2．If 𝑘 = 0, then return 𝑛 + 1
3．Pick up an edge 𝑢, 𝑣 	in G at random
   return min(BS(𝐺 − 𝑢, 𝑘 − 1),	BS(𝐺 − 𝑣, 𝑘 − 1))+1
The value of BS 𝐺, 𝑘 	is less than or equal 𝑘, outputs Yes.
Otherwise, outputs No. 24



Now, an input graph 𝐺 is the following and 𝑘	 = 	4	for VC.
If there exists a vertex cover of size at most 4, then 
algorithms outputs Yes. Otherwise, it outputs No.
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Since 𝐺 has 9 egdes and 𝑘	 = 	4, then algorithm first pick up 
an edge 𝑢, 𝑣  at random. 
Now, we assume that it choose a blue edge. 
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𝑣

𝑢

Choose this 
edge



BS(𝐺 − 𝑢, 𝑘 − 1)	and BS(𝐺 − 𝑣, 𝑘 − 1)	means either 𝑢 or 𝑣 is 
included in vertex cover, then algorithm branches to two 
cases.
a. Vertex Cover Problem with a graph 𝐺 − 𝑢 and 𝑘 = 3

b. Vertex Cover Problem with a graph 𝐺 − 𝑣 and 𝑘 = 3

See the next slide. 
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𝑣

𝑢

𝑣

𝑢

𝑣

𝑢

𝑘 = 4

𝑘 = 3
𝑘 = 3

Dot line edges 
are removed from 𝐺

An orange vertex is 
in a vertex cover.



Next, the graph 𝐺 − 𝑢 has 6 edges and 𝑘	 = 3, then 
algorithm pick up an edge at random.
Now, we assume that it choose a blue edge.
Branches to two cases in the same way of the previous 
slide.
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Choose this 
edge
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𝑘 = 2

𝑘 = 3

Dot line edges 
are removed from 𝐺

An orange vertex is 
in a vertex cover.

𝑘 = 2



Repeated these operations 
for every branch. 
We get this tree.
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・・・ ・・・ ・・・

𝑘 = 4

𝑘 = 3

𝑘 = 2

𝑘 = 1

𝑘 = 0



Now, we focus on graphs with 𝑘	 = 	0. 
See the following figures.
There exists at least one vertex cover, then algorithm 
output Yes for this input. 
If there exists no vertex cover, the algorithm outputs No. 
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Not VC VC VC VC



For every branch, we branches two cases and reduce 𝑘 to 
𝑘 − 1. Thus, the maximum number of branches is 2𝑘.
In addition, we remove edges for each branch, and it takes 
𝑂 𝑛 	time.

Hence, the total running time is 2𝑘	×	𝑂(𝑛) 	= 	𝑂 2!𝑛
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We consider how to find a minimum vertex cover of a 
graph 𝐺.
We can find it by using the previous algorithm.
For each level, the number of vertices included in a vertex 
cover is same.
Thus, if there exists a vertex cover of 𝐺 at level ℓ, then the 
size of vertex cover is ℓ.
The way to find a minimum vertex cover is to find the 
minimum ℓ, that is,  the level such that a vertex cover of G 
first appears. See the next slide. 34
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This is a branching tree.
Blued nodes are not vertex covers and an orange node is a vertex cover of G.
White nodes are unsearched.
In this case, level 3 is the first level that a vertex cover are found.
Thus, the size of a minimum vertex cover is 3.
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Intuitively speaking, “Intrinsically difficult points to solve”
Ø If we can solve kernel part of an input, its solution is to 
be almost solution of the input.

Kernel
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A kernelizaition is a kind of self-reduction
Ø Input 𝑥, 𝑘 ： 𝑥	and 𝑘 are an original instance and parameter, 
respectively

Ø Output 𝑥′, 𝑘′ 	：a kernelized instance
Ø Constraints

ü 𝑥! = 	𝑓 𝑘 ,	where 𝑓(𝑘)	is some function of 𝑘
ü 𝑘′	 = 	𝑔(𝑘),	where g(k) is some function of 𝑘
ü A reduction is done in polynomial time of |𝑥| 	+ 	𝑘

There exists a FPT algorithm for a problem P
 if and only if P has a kernel. [Cai, Chen, Downey, and Fellows 1997]
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A degree of 𝑣 is the number of edges connected to the 
vertex 𝑣

Kernelization:
We do the following operations until there exist no more 
vertices with degree greater than 𝑘.
Ø We include 𝑣 in a vertex cover 𝑈 and remove 𝑣 and the 
edges connected to 𝑣 from 𝐺
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Let 𝐺′	be a graph that removed all vertices with degree 
greater than 𝑘 from 𝐺.
Let 𝑘′	be k ‒ (the number of vertices included in 𝑈 by 
kernelization)

BS’ 𝐺, 𝑘
1．By kernelization, we get 𝐺′ and 𝑘′
2．We run BS 𝐺′	𝑘′ ,	where BS is the FPT algorithm for 

VC explained former. 
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Let	𝑉′	be the vertex set of 𝐺′	and 𝑈′	be a vertex cover of 𝐺.
Then, there exists no edge in any pair of vertices in 𝑉′ − 𝑈′.
If there exists some edge, it violates 𝑈′	is a vertex cover.

𝑈′ 𝑉′ − 𝑈′
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Vertex 
Cover

If this edge exists, 
𝑈′	is not a vertex 
cover!



For each vertex 𝑢 in 𝑈′, 𝑢′ is connected to at most 𝑘 
vertices. Thus, 𝑉1 − 𝑈1 ≤ 𝑘 𝑈 	holds.
Hence, 𝑉1 	= 𝑈1 + 𝑉1 −1 ’ ≤ 𝑘 + 1 𝑈1 ≤ 	𝑘 𝑘 + 1 	holds.

𝑈1 𝑉′ − 𝑈1
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Kernelization is done in 𝑂 𝑛2 	time because the number of 
vertices is 𝑛 and removing edges is done in 𝑂 𝑛  time.
In addition, the followings hold.
Ø 𝑉1 ≤ 	𝑘 𝑘 + 1

Ø 𝑘1 ≤ 	𝑘

As the running time of  BS 𝑛, 𝑘  is 𝑂 2!𝑛 ,	then the running 

time of BS 𝑉1 , 𝑘1 	is 𝑂 2!𝑘 𝑘 + 1 	= 	𝑂 𝑘#2! .

Thus, the overall running time is 𝑂 𝑘#2! + 𝑛# .
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We introduce algorithms for the (Minimum) Vertex Cover
Ø 2-approximation algorithm for the Minimum Vetex Cover
Ø A simple FPT algorithm for the Vertex Cover

Ø It can find minimum vertex covers.
Ø FPT algorithm for the Vertex Cover via Kernelization.

There exist a various kind of algorithms; if you are 
interested, we recommend you survey them.
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