
1

2

Study algorithms for NP-complete problems.
Ø 2-Approximation Algorithm for the Minimum Vertex
Cover

Ø Exact Algorithms and FPT Algorithms
Ø FPT Algorithms for Vertex Cover

3

Input：A graph 𝐺 and a positive integer 𝑘
Ask：Is there a vertex cover of size 𝑘 in 𝐺 ?
Vertex Cover：A set of vertices 𝐶 such that for every
edge 𝑒, at least one endpoint of 𝑒 in 𝐶.

4Blue circles are vertex cover Not vertex cover

Input：A graph	𝐺
Output：A vertex cover 𝑈 whose size is minimum.

5

𝐺 𝑈: blue vertices
There is no vertex
cover of size 3.

Polynomial-time approximation algorithms
Ø 2-approximation [Gavril, Yannakakis]

Ø 2 − 1/Θ log	𝑉 approximation [Karakostas 04]

Hardness of approximation
Ø Unless P=NP, there in no 1.3606-approximation
polynomial-time algorithm. [Dinur and Safre 2005]

Ø If the Unique Games Conjecture holds, then there is no
2-εapproximation polynomial-time algorithm [Knot and
Regev 2003]

6

Matching

A matching	𝑀	is a set of edges of a graph 𝐺 such that
any pair of edges in 𝑀 cannot share any vertex.

7
Orange lines are a matching

Maximal Matching

Ø A maximal matching is a matching 𝑀 of a graph	𝐺	

 that is not a subset of any other matching

8
Maximal Matching Not Maximal Matching

Maximum Matching

Ø A Maximum Matching is a maximal matching 𝑀 such

that the number of edge in 𝑀 is maximum.

9
Maximum MatchingNot Maximum Matching

The algorithm is based on a maximal matching.

1．Compute a maximal matching 𝑀 of a graph 𝐺.

2．Include both endpoints of each edge in a vertex

 cover 𝑈′

3．Outputs 𝑈′

It’s quite simple algorithm!

10

1．Compute a maximal matching	𝑀	of a graph 𝐺

Ø We repeat the following operation until checking all edges.

• We pick up an edge 𝑒 at random.

ü If both endpoints of 𝑒 are not included in 𝑀, we add 𝑒 to 𝑀.

ü Otherwise, we discard	𝑒.

11

2．Include both endpoints of each edge in a vertex

 cover 𝑈’ (blue vertices)

3．Outputs 𝑈’

12

Let 𝑛 and 𝑚 be the number of vertices and edges of a
graph 𝐺, respectively.

Algorithm:
1. Compute a maximal matching 𝑀 of a graph 𝐺 → 𝑂(𝑚)
2. Include both endpoints of each edge in a vertex cover 𝑈′
→ 𝑂(𝑛)

3. Outputs 𝑈′ → 𝑂(𝑛)

The overall running time is 𝑂(𝑛 +𝑚).
13

Let 𝑈 be a minimum vertex cover and 𝑈′ be a vertex cover that

the algorithm outputs and 𝑀 be a maximal matching of 𝐺.

Then, the followings hold.

1． 𝑈 ≤ |𝑈!|	because 𝑈 is minimum.

2． 𝑀 ≤ |𝑈|	because any edges must be

 covered by one element in 𝑈.

3．|𝑈′| 	= 	2|𝑀|	because the property of the algorithm.

From 2 and 3, 𝑈! = 	2 𝑀 ≤ 	2|𝑈|	holds.

Thus, this algorithm satisfies 2-approximation.
14

15

In some case, we want an optimal solution.
Ø We cannot take an exponential time.
Ø A solution is assured to be optimal.

A simple exact algorithm for vertex cover : for any subset
with size k of vertices, we check whether it is a vertex
over or not.

It takes 𝑂(𝑛!𝑚) = 	𝑂 𝑛!"# 	time because the number of

subsets is 𝑂 𝑛! 	and checking procedure takes 𝑂(𝑚) time
for each subset. 16

𝑂 𝑛!"# is not efficient!
If 𝑘 is some constant, it is polynomial of 𝑛.

However, when 𝑛 = 10000	and 𝑘 = 10, then 𝑂 𝑛!"# 	is
1000012	 = 1048	… It’s quite huge!

When k is small, can we seek a solution efficiently?

Improving 𝑂 𝑛!"# 	time to 𝑂 𝑛$.&! 	time is not enough…

The form 𝑂 𝑛' ! 	is not prefered, where 𝑓 𝑘 is some
function of 𝑘.

17

FPT（Fixed Parameterized Tractable）
Ø Input size: 𝑛, a paremeter: 𝑘

Ø FPT algorithm can solve a problem in 𝑂 𝑓 𝑘 ×𝑛() 	time.

Is FPT algorithm polynomial-time algorithm?
Ø NO. Because 𝑘	may depend a function of 𝑛

ü Though 𝑂 2!𝑛 time is FPT,
when 𝑘 = 𝑛, it takes 𝑂 𝑛2*

Ø However, when 𝑘 is small, FPT algorithm can solves a
NP-complete problem efficiently. 18

Why are FPT algorithms important？
Ø We can obtain an optimal solution.
Ø If k is small, it becomes an efficient algorithm.

ü Note that it is polynomial time of n.
ü An algorithm runs in 𝑂 2𝑘𝑛 	time,
 then when 𝑛 = 10000	and 𝑘 = 10, it takes about

 107	time > 	𝑂 𝑛!"# 	≒ 	1048

19

It have yet been proven, but probably it is not true.

There should be a hierarchy of difficulty within the NP
complete problem.
Ø A set of problems that has a FPT algorithm.
Ø A set of problems that has no FPT algorithm.

ü W-hierarchy : W[1]-complete, W[2]-complete, …

20

FPT algorithm

Ø 𝑂 2!𝑛 	time：simple branch and bound (explain later)

Ø 𝑂 𝑘#2! + 𝑛 	time by using kernelization (explain later）

Ø 𝑂 1.2738! + 𝑘𝑛 	time [Chen, Kanji and Xia 2006]

Hardness
Ø There exists no 2+ ! 𝑛() time algorithm if ETH
(Exponential Time Hypothesis) is true.

21

22

Input：A graph 𝐺 and a positive integer 𝑘
Ask：Is there a vertex cover of size 𝑘 in 𝐺 ?
Vertex Cover：A set of vertices 𝐶 such that for every
edge 𝑒, at least one endpoint of 𝑒 in 𝐶.

23Blue circles are vertex cover Not vertex cover

𝐺	– 	𝑣	is a graph 𝐺′ obtained by removing the vertex 𝑣 and
all edges connected to 𝑣 from 𝐺.

BS 𝐺, 𝑘 ：𝐺 has 𝑛 vertices.
1．If there is no edge in 𝐺, then return 0
2．If 𝑘 = 0, then return 𝑛 + 1
3．Pick up an edge 𝑢, 𝑣 	in G at random
 return min(BS(𝐺 − 𝑢, 𝑘 − 1),	BS(𝐺 − 𝑣, 𝑘 − 1))+1
The value of BS 𝐺, 𝑘 	is less than or equal 𝑘, outputs Yes.
Otherwise, outputs No. 24

Now, an input graph 𝐺 is the following and 𝑘	 = 	4	for VC.
If there exists a vertex cover of size at most 4, then
algorithms outputs Yes. Otherwise, it outputs No.

25

Since 𝐺 has 9 egdes and 𝑘	 = 	4, then algorithm first pick up
an edge 𝑢, 𝑣 at random.
Now, we assume that it choose a blue edge.

26

𝑣

𝑢

Choose this
edge

BS(𝐺 − 𝑢, 𝑘 − 1)	and BS(𝐺 − 𝑣, 𝑘 − 1)	means either 𝑢 or 𝑣 is
included in vertex cover, then algorithm branches to two
cases.
a. Vertex Cover Problem with a graph 𝐺 − 𝑢 and 𝑘 = 3

b. Vertex Cover Problem with a graph 𝐺 − 𝑣 and 𝑘 = 3

See the next slide.

27

28

𝑣

𝑢

𝑣

𝑢

𝑣

𝑢

𝑘 = 4

𝑘 = 3
𝑘 = 3

Dot line edges
are removed from 𝐺

An orange vertex is
in a vertex cover.

Next, the graph 𝐺 − 𝑢 has 6 edges and 𝑘	 = 3, then
algorithm pick up an edge at random.
Now, we assume that it choose a blue edge.
Branches to two cases in the same way of the previous
slide.

29

Choose this
edge

30

𝑘 = 2

𝑘 = 3

Dot line edges
are removed from 𝐺

An orange vertex is
in a vertex cover.

𝑘 = 2

Repeated these operations
for every branch.
We get this tree.

31

・・・ ・・・ ・・・

𝑘 = 4

𝑘 = 3

𝑘 = 2

𝑘 = 1

𝑘 = 0

Now, we focus on graphs with 𝑘	 = 	0.
See the following figures.
There exists at least one vertex cover, then algorithm
output Yes for this input.
If there exists no vertex cover, the algorithm outputs No.

32
Not VC VC VC VC

For every branch, we branches two cases and reduce 𝑘 to
𝑘 − 1. Thus, the maximum number of branches is 2𝑘.
In addition, we remove edges for each branch, and it takes
𝑂 𝑛 	time.

Hence, the total running time is 2𝑘	×	𝑂(𝑛) 	= 	𝑂 2!𝑛

33

We consider how to find a minimum vertex cover of a
graph 𝐺.
We can find it by using the previous algorithm.
For each level, the number of vertices included in a vertex
cover is same.
Thus, if there exists a vertex cover of 𝐺 at level ℓ, then the
size of vertex cover is ℓ.
The way to find a minimum vertex cover is to find the
minimum ℓ, that is, the level such that a vertex cover of G
first appears. See the next slide. 34

35

This is a branching tree.
Blued nodes are not vertex covers and an orange node is a vertex cover of G.
White nodes are unsearched.
In this case, level 3 is the first level that a vertex cover are found.
Thus, the size of a minimum vertex cover is 3.

36

Intuitively speaking, “Intrinsically difficult points to solve”
Ø If we can solve kernel part of an input, its solution is to
be almost solution of the input.

Kernel

37

A kernelizaition is a kind of self-reduction
Ø Input 𝑥, 𝑘 ： 𝑥	and 𝑘 are an original instance and parameter,
respectively

Ø Output 𝑥′, 𝑘′ 	：a kernelized instance
Ø Constraints

ü 𝑥! = 	𝑓 𝑘 ,	where 𝑓(𝑘)	is some function of 𝑘
ü 𝑘′	 = 	𝑔(𝑘),	where g(k) is some function of 𝑘
ü A reduction is done in polynomial time of |𝑥| 	+ 	𝑘

There exists a FPT algorithm for a problem P
 if and only if P has a kernel. [Cai, Chen, Downey, and Fellows 1997]

38

A degree of 𝑣 is the number of edges connected to the
vertex 𝑣

Kernelization:
We do the following operations until there exist no more
vertices with degree greater than 𝑘.
Ø We include 𝑣 in a vertex cover 𝑈 and remove 𝑣 and the
edges connected to 𝑣 from 𝐺

39

Let 𝐺′	be a graph that removed all vertices with degree
greater than 𝑘 from 𝐺.
Let 𝑘′	be k ‒ (the number of vertices included in 𝑈 by
kernelization)

BS’ 𝐺, 𝑘
1．By kernelization, we get 𝐺′ and 𝑘′
2．We run BS 𝐺′	𝑘′ ,	where BS is the FPT algorithm for

VC explained former.

40

Let	𝑉′	be the vertex set of 𝐺′	and 𝑈′	be a vertex cover of 𝐺.
Then, there exists no edge in any pair of vertices in 𝑉′ − 𝑈′.
If there exists some edge, it violates 𝑈′	is a vertex cover.

𝑈′ 𝑉′ − 𝑈′

41

Vertex
Cover

If this edge exists,
𝑈′	is not a vertex
cover!

For each vertex 𝑢 in 𝑈′, 𝑢′ is connected to at most 𝑘
vertices. Thus, 𝑉1 − 𝑈1 ≤ 𝑘 𝑈 	holds.
Hence, 𝑉1 	= 𝑈1 + 𝑉1 −1 ’ ≤ 𝑘 + 1 𝑈1 ≤ 	𝑘 𝑘 + 1 	holds.

𝑈1 𝑉′ − 𝑈1

42

Kernelization is done in 𝑂 𝑛2 	time because the number of
vertices is 𝑛 and removing edges is done in 𝑂 𝑛 time.
In addition, the followings hold.
Ø 𝑉1 ≤ 	𝑘 𝑘 + 1

Ø 𝑘1 ≤ 	𝑘

As the running time of BS 𝑛, 𝑘 is 𝑂 2!𝑛 ,	then the running

time of BS 𝑉1 , 𝑘1 	is 𝑂 2!𝑘 𝑘 + 1 	= 	𝑂 𝑘#2! .

Thus, the overall running time is 𝑂 𝑘#2! + 𝑛# .
43

We introduce algorithms for the (Minimum) Vertex Cover
Ø 2-approximation algorithm for the Minimum Vetex Cover
Ø A simple FPT algorithm for the Vertex Cover

Ø It can find minimum vertex covers.
Ø FPT algorithm for the Vertex Cover via Kernelization.

There exist a various kind of algorithms; if you are
interested, we recommend you survey them.

44

