大規模知識処理特論第11回

脊戸 和寿

今回の講義内容

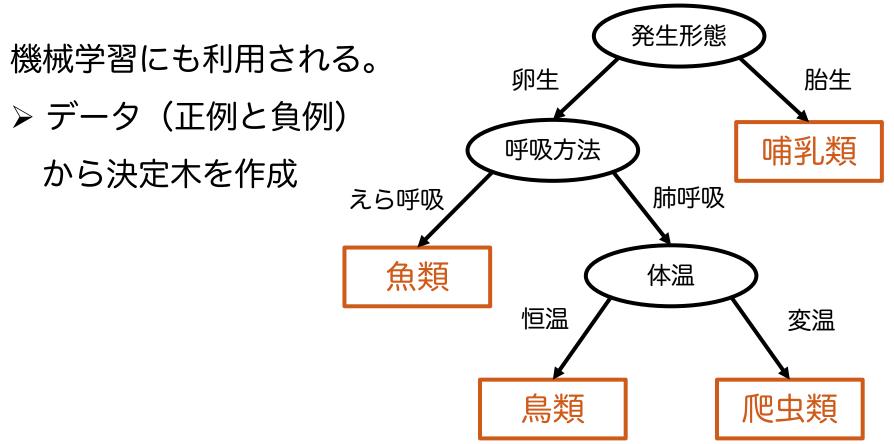
論理関数とその表現法について学ぶ

- > 論理関数
- > 真理值表
- > 論理式(和積標準形,積和標準形)
- ▶ カルノー図
- > 論理回路
- > 二分決定木
- ➤ 二分決定グラフ (BDD)

二分決定木(1)

決定木

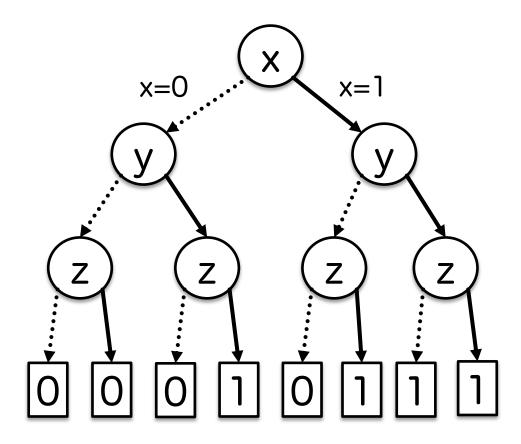
説明変数による分類を木状に繰り返すことで事象を説明する。



真理値表と二分決定木

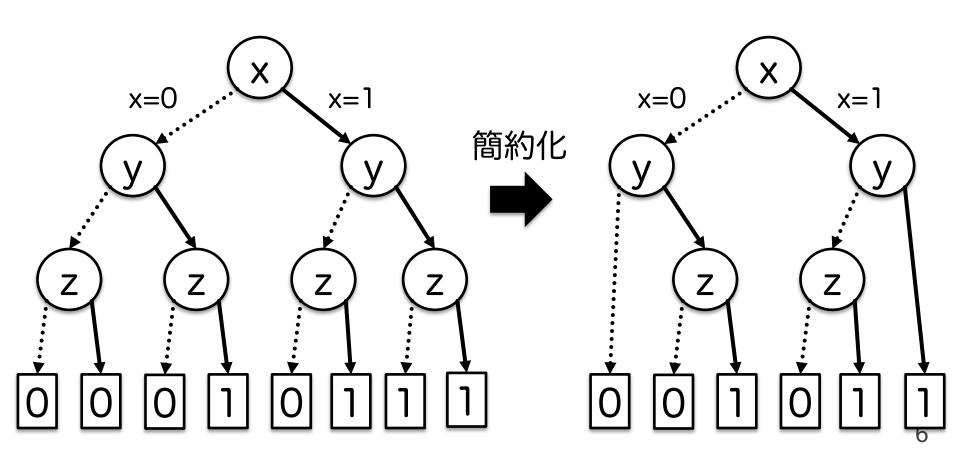
真理値表から二分決定木は簡単に作成できる。

×	У	Z	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1



二分決定木

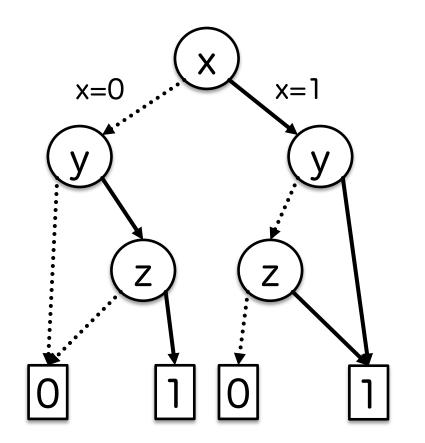
二分決定木は簡約化できることがある

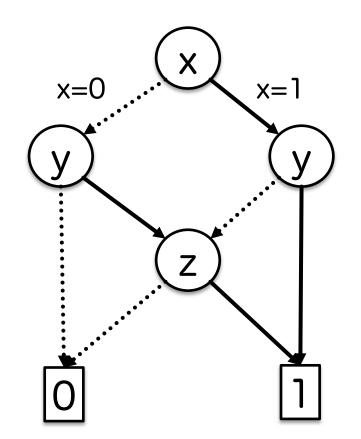


二分決定木

決定木は木構造を保つ必要がある

▶ 下記の 2 つは左右ともに木ではない





練習問題]

3変数 AND 関数, OR 関数の二分決定木を作成し、簡約化せよ

> 真理値表は下記

AND関数

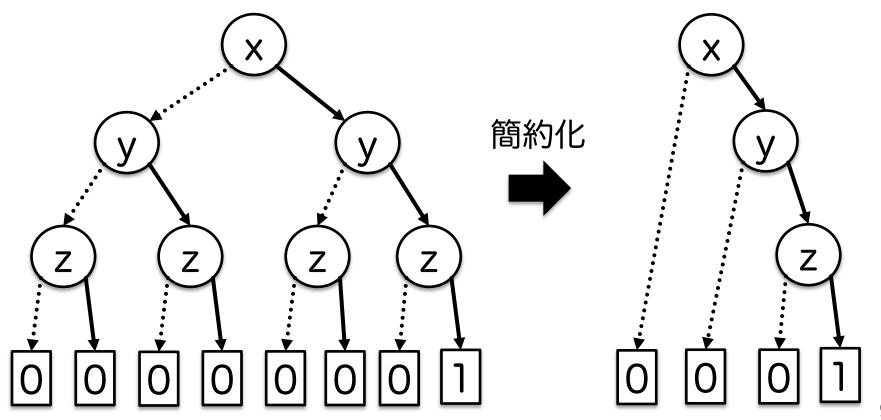
X	у	Z	$x \wedge y \wedge z$
0	0	0	0
0	1	0	0
1	0	0	0
1	1	1	1

OR関数

X	у	Z	$x \lor y \lor z$
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	1

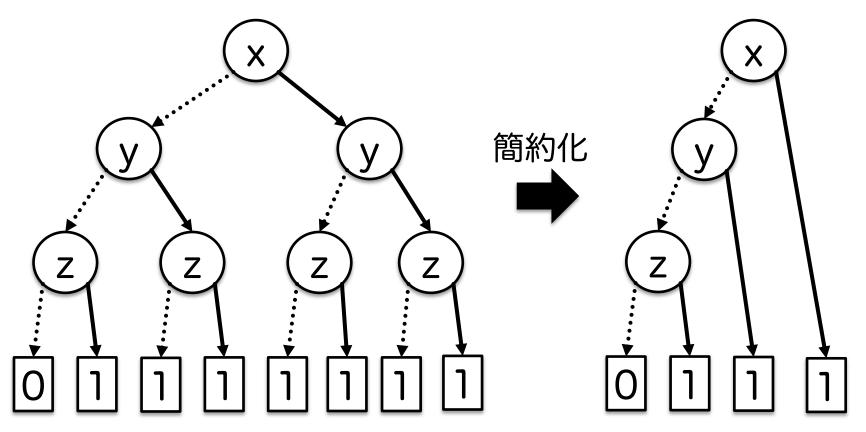
練習問題1 (解答)

AND 関数



練習問題1 (解答)

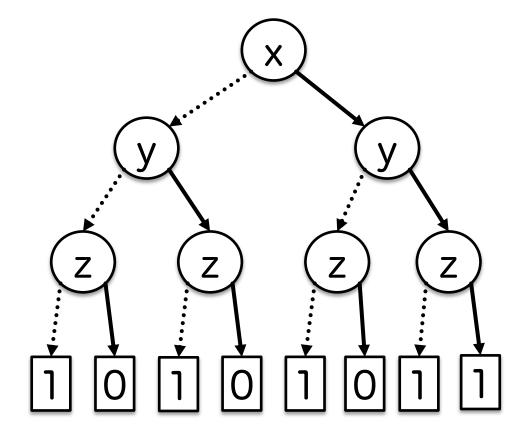
OR 関数



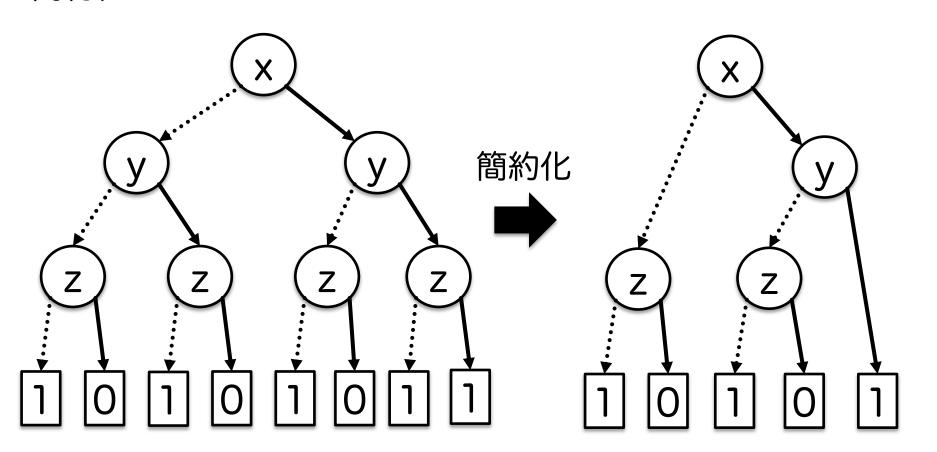
二分決定木(2)

下記の真理値表を x, y, z の順に値を確認する決定木

×	У	Z	f
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

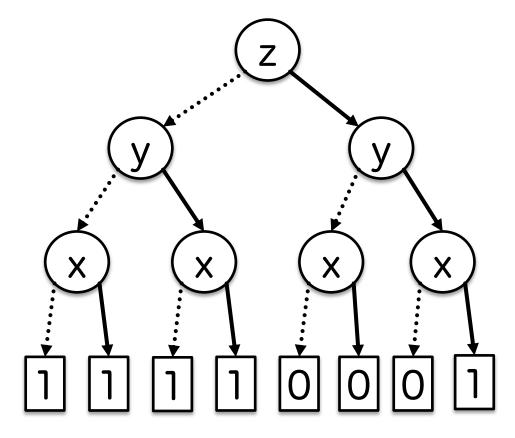


簡約化する

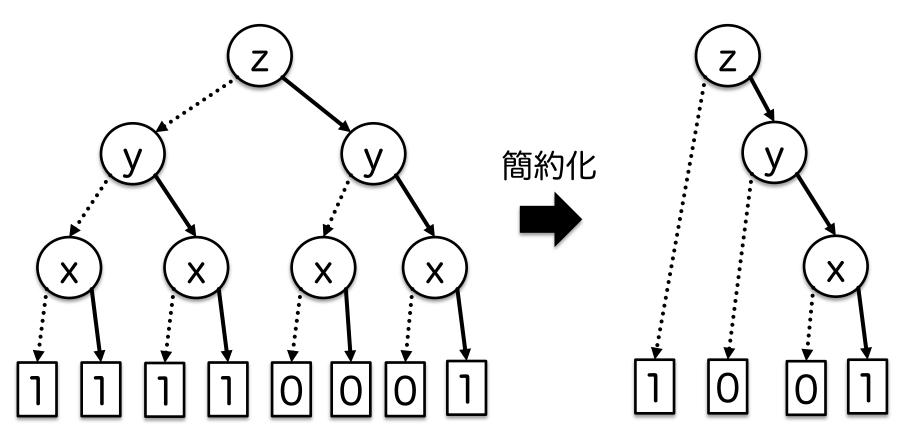


同じ真理値表を z、y、x の順に値を確認する決定木

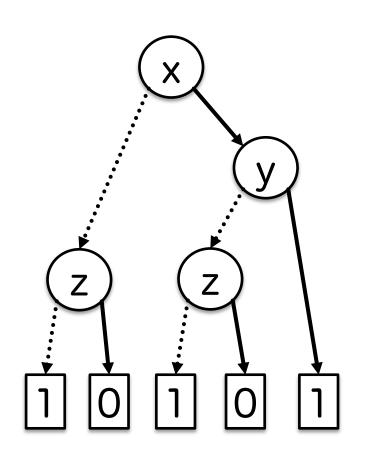
×	У	Z	f
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
7	7	1	1

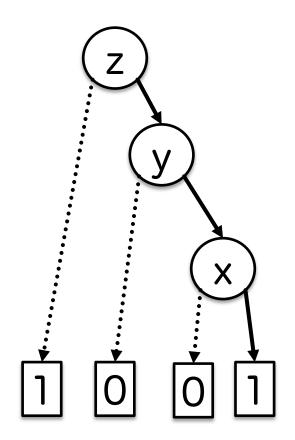


簡約化する



同じ関数を表す決定木だが、サイズが異なる





前述の例のように変数を読む順序によって決定木は変わる

- ▶ 出来るだけコンパクトな決定木を構成ことは重要
 - ✓ メモリの節約
- ▶ コンパクトな決定木を構成することは簡単ではない
 - ✓ 最適な変数順序をどう決める??

練習問題2

下記は論理関数 f を表す真理値表である。

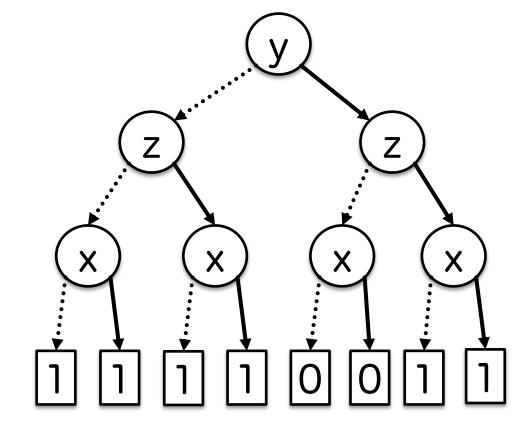
fを表す出来るだけコンパクトな二分決定木を求めよ。

×	У	Z	f
0	0	0	1
0	0	1	1
0	1	0	0
0	٦	1	1
1	0	0	1
J	0	٦	1
٦	1	0	0
7	1	1	1

練習問題2(解答)

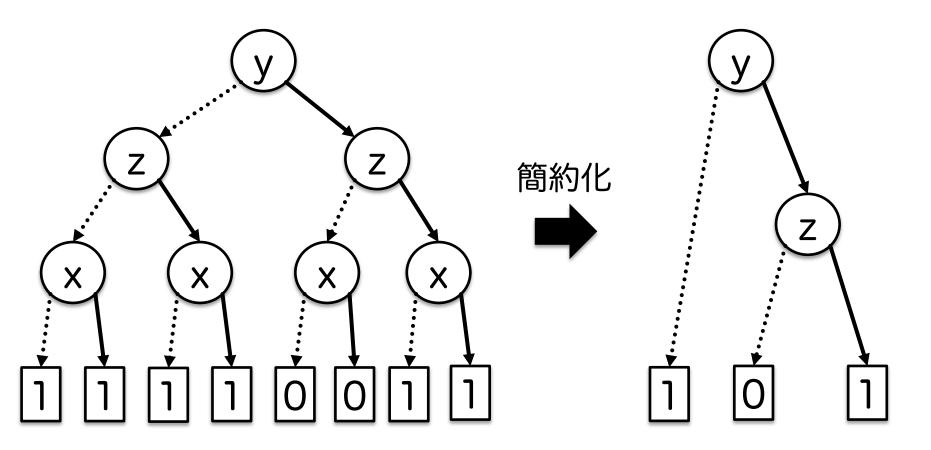
y, z, x の順に変数の値を確認する決定木を作成する。

X	У	Z	f
0	0	0	1
0	0	7	1
0	1	0	0
0	1	7	1
٦	0	0	1
٦	0	7	1
1	1	0	0
1	J	J	1



練習問題2 (解答)

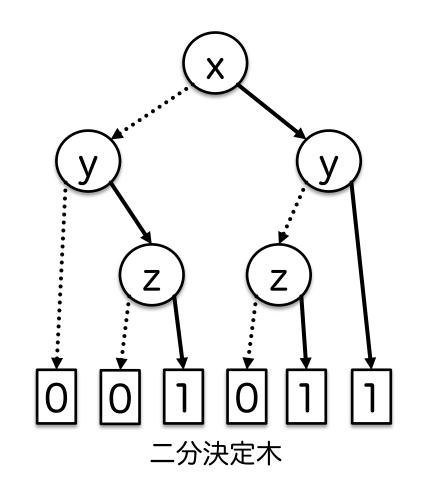
作成した決定木を簡約化する。

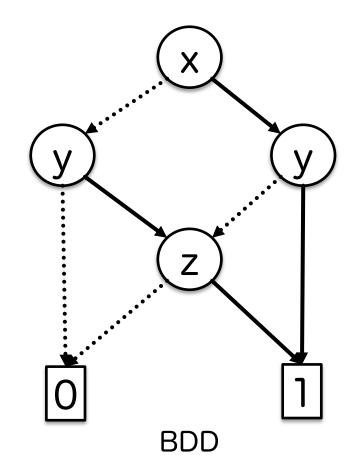


二分決定グラフ(1) Binary Decision Diagram:BDD

BDD (二分決定グラフ)

二分決定木とは異なり、「有向非巡回グラフ」で表現





BDD(二分決定グラフ)

BDD は下記を満たす

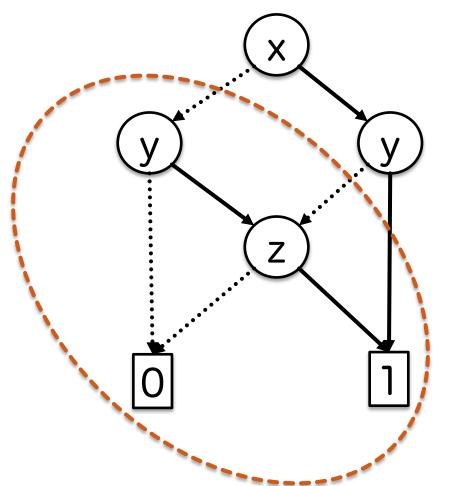
- 定数節点(0,1)と変数節点から構成される
- ▶ 有向非巡回グラフである
- ▶ 定数節点から出る枝はない
- 変数節点からは、0-枝と1-枝のちょうど 2 本の枝が出る
- ▶ 変数節点のうち 1 つは、次数が 0 の根節点である
- ➤ BDD のサイズは、節点の数で定義される

BDDの特徴

多くの実用的な論理関数を「コンパクト」に表現可能変数順序が定まると表現が「一意」に定まるBDD に対する効率な演算がある [Bryant 1986] 部分グラフが、もとの論理関数の部分論理関数を表す近年、さまざまな分野に応用されている

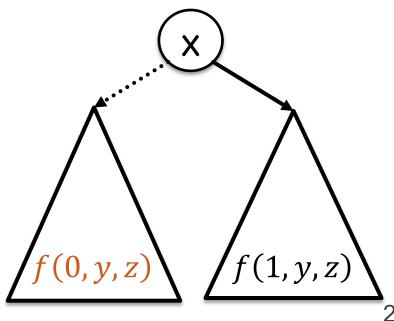
BDD の特徴

部分グラフが、もとの論理関数の部分論理関数を表す



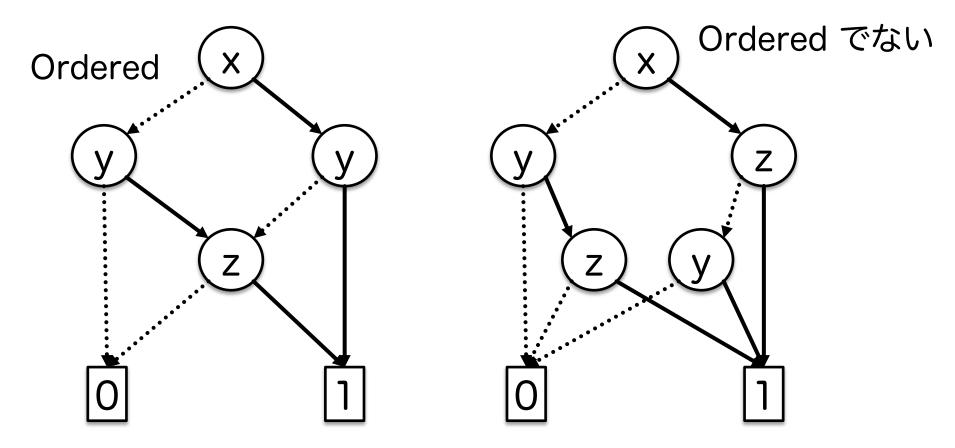
$$\bar{x}(yz) \lor x(\bar{y}z \lor y)$$

$$= \bar{x}f(0, y, z) \lor xf(1, y, z)$$



OBDD (Ordered BDD)

変数順序:全順序関係に従って、変数が出現

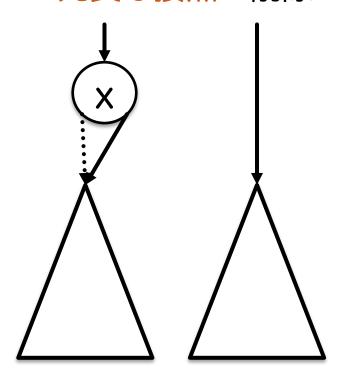


Ordered はサイズが大きくなる傾向にあるが、扱いやすい

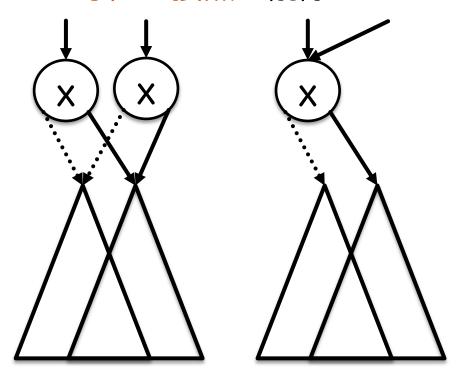
ROBDD (Reduced Ordered BDD)

BDD に 2 つの簡約化規則を適用

冗長な接点の削除



等価な接点の削除



講義では、ROBDD を扱う(単に BDD と呼ぶ)

練習問題3

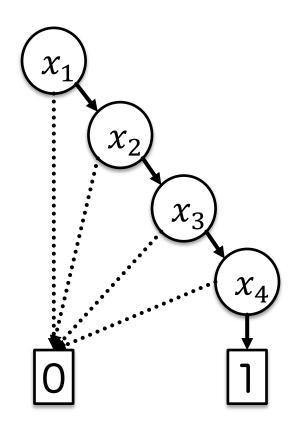
次のそれぞれの関数を BDD であらわせ

- (1) $x_1 \wedge x_2 \wedge x_3 \wedge x_4$
- (2) $x_1 \vee x_2 \vee x_3 \vee x_4$
- (3) $(x_1 \lor x_2) \land x_3$
- $(4) x_1 \oplus x_2 \oplus x_3 \oplus x_4$

練習問題3 (解答)

次のそれぞれの関数を BDD であらわせ

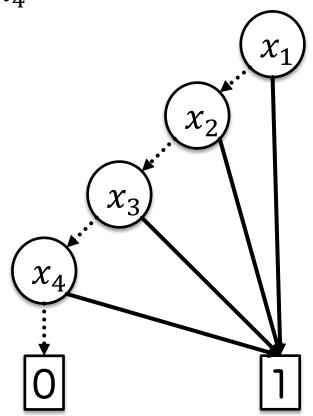
(1) $x_1 \wedge x_2 \wedge x_3 \wedge x_4$



練習問題3(解答)

次のそれぞれの関数を BDD であらわせ

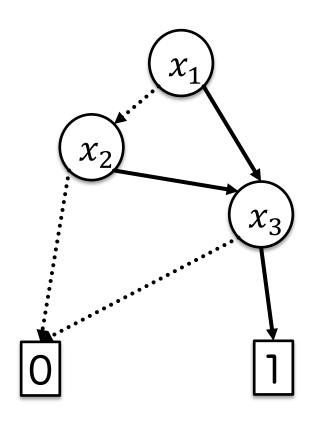
(2) $x_1 \vee x_2 \vee x_3 \vee x_4$



練習問題3(解答)

次のそれぞれの関数を BDD であらわせ

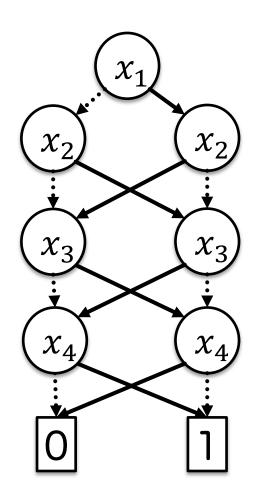
(3)
$$(x_1 \lor x_2) \land x_3$$



練習問題3(解答)

次のそれぞれの関数を BDD であらわせ

 $(4) x_1 \oplus x_2 \oplus x_3 \oplus x_4$



二分決定グラフ(2) Binary Decision Diagram:BDD

変数順序による BDD の変化

決定木と同様に変数を読む順序によって BDD の形は変わる.

どんな論理関数も BDD でコンパクトに表現できる?

- ➤ 任意の変数順序でサイズが小さい → 嬉しい!
- ▶ どんな変数順序でも、サイズが大きい → 辛い…
- ▶ ある変数順序で、サイズが小さい。
 - ✓ よい変数順序を求めることが重要
 - ✓ 最適な変数順序を求める → NP完全 [Tani, et al 1993]

任意の変数順序でサイズが小さい例

次の表内の関数は変数順序を変えてもサイズは変わらない

関数	BDD のサイズ	
論理積(AND)	O(n)	
論理和(OR)	O(n)	
排他的論理和(EXOR)	O(n)	
多数決関数	O(n ²)	
対称論理関数	O(n ²)	

※ 対称論理関数とは、入力変数内の1の個数のみで出力がきまる関数.

どんな変数順序でもサイズが大きい例

どの変数順序でも BDD のサイズが大きくなる例がある

- ▶ 算術乗算 [Bryant 1991]:Ω(2^{n/5})
- ▶ 算術除算 [Horiyama, Yajima 1998]:Ω(2^{n/8})
- > ランダムな関数

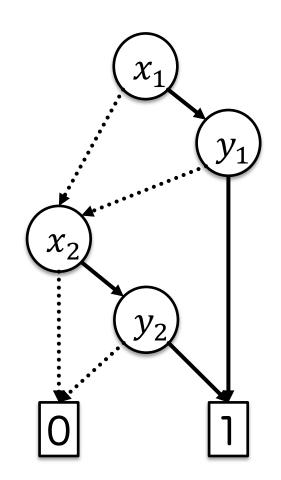
例: $x_1y_1 \lor x_2y_2$

次の2つの変数順序を考える.

- $\triangleright x_1, y_1, x_2, y_2$
- $> x_1, x_2, y_1, y_2$

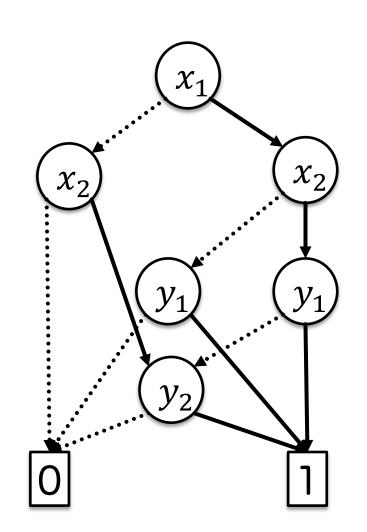
例: $x_1y_1 \vee x_2y_2$

 $> x_1, y_1, x_2, y_2$

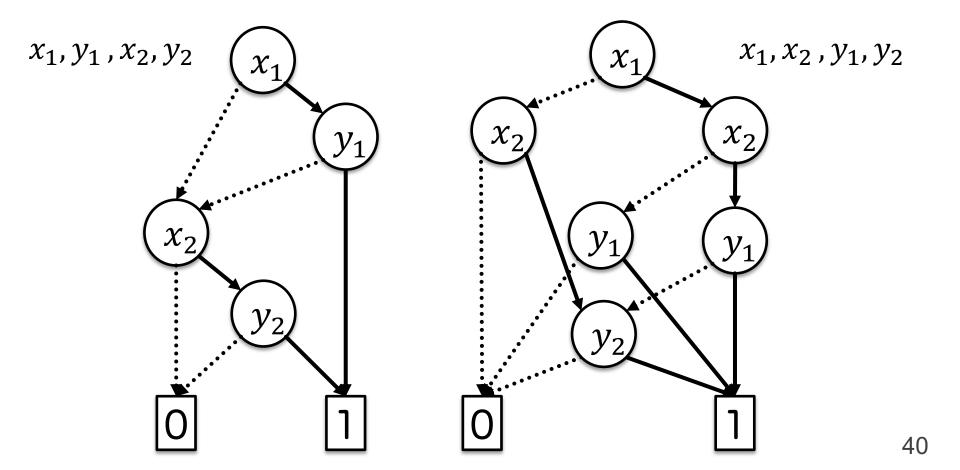


例: $x_1y_1 \vee x_2y_2$

 $> x_1, x_2, y_1, y_2$



例: $x_1y_1 \vee x_2y_2$



例: $x_1y_1 \lor x_2y_2 \lor \cdots \lor x_ny_n$

次の2つの変数順序を考える.

- > x_1 , y_1 , x_2 , y_2 , ..., x_n , $y_n \to \forall \, \forall \, \vec{x} : O(n)$
- > $x_1, x_2, ..., x_n, y_1, y_2, ..., y_n \rightarrow \forall \forall \forall \exists \exists O(2^n)$

なぜ、これほどサイズに差がでるのか自分で考えてみること.

練習問題 4

2 bitの 2 進数 a: a_1a_0 と b: b_1b_0 を考える。

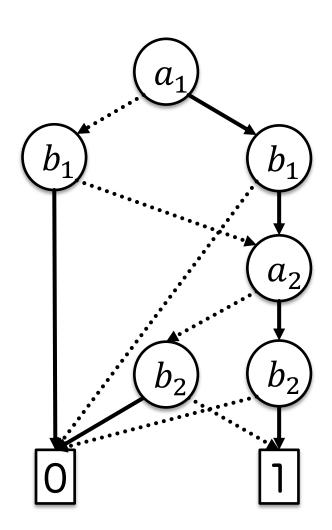
a = b の時に 1、それ以外は 0 を出力する

論理関数 $f(a_1, a_0, b_1, b_0)$ を表す BDD のうち、

最小サイズの変数順序および最大サイズの変数順序を求めよ。

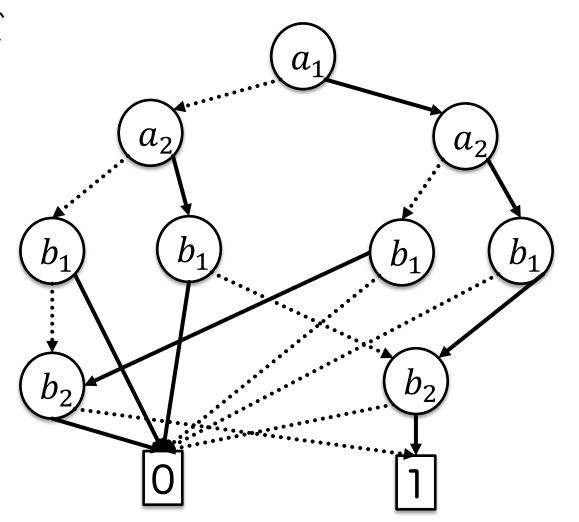
練習問題 4 (解答)

最小サイズ



練習問題 4 (解答)

最大サイズ



まとめ

- 二分決定木と二分決定グラフ (BDD)
- > 変数の順序がサイズに大きく影響する場合がある
- ▶ サイズを最小化する変数順序を見つけることは難しい