| 日時:2016年8月23日(火) 14:00-16:00
場所:九州大学 伊都キャンパス ウエスト2号館 3階313号室
主催:新学術領域研究「多面的アプローチの統合による計算限界の解明」
講師:Elad Hazan 氏 (Princeton University)
Title:How to classify from sparse data
Abstract:
For many data sets that are sparse and structured, data reconstruction is computationally hard.
A notable example is the case for media-recommendation data, which is sparse and low-rank.
We consider general model for classification and regression tasks where we have missing data
and assume that the (clean) data resides in a low dimensional subspace.
We give a non-reconstructive learning approach for this setting with provable guarantees.
based on joint work with Tomer Koren, Roi Livni and Yishay Mansour (COLT 2016)
ホスト:瀧本英二,畑埜晃平
|